scholarly journals Saponification ofJatropha curcasSeed Oil: Optimization by D-Optimal Design

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Jumat Salimon ◽  
Bashar Mudhaffar Abdullah ◽  
Nadia Salih

In this study, the effects of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA) percentage were investigated. D-optimal design was employed to study significance of these factors and optimum condition for the technique predicted and evaluated. The optimum conditions for maximum FFA% were achieved when 1.75 M ethanolic KOH concentration was used as the catalyst, reaction temperature of65°C,and reaction time of 2.0 h. This study showed that ethanolic KOH concentration was significant variable for saponification ofJ. curcasseed oil. In an 18-point experimental design, percentage of FFA for saponification ofJ. curcasseed oil can be raised from 1.89% to 102.2%.

2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Ratna Dewi Kusumaningtyas ◽  
Haniif Prasetiawan ◽  
Radenrara Dewi Artanti Putri ◽  
Bayu Triwibowo ◽  
Siti Choirunisa Furi Kurnita ◽  
...  

Nyamplung seed (Calophyllum inophyllum L.) oil is a prospective non-edible vegetable oil as biodiesel feedstock. However, it cannot be directly used in the alkaline catalysed transesterification reaction since it contains high free fatty acid (FFA) of 19.17%. The FFA content above 2% will cause saponification reaction, reducing the biodiesel yield. In this work, FFA removal was performed using sulfuric acid catalysed esterification to meet the maximum FFA amount of 2%. Experimental work and response surface methodology (RSM) analysis were conducted. The reaction was conducted at the fixed molar ratio of nyamplung seed oil and methanol of 1:30 and the reaction times of 120 minutes. The catalyst concentration and the reaction temperature were varied. The highest reaction conversion was 78.18%, and the FFA concentration was decreased to 4.01% at the temperature of 60℃ and reaction time of 120 minutes. The polynomial model analysis on RSM demonstrated that the quadratic model was the most suitable FFA conversion optimisation. The RSM analysis exhibited the optimum FFA conversion of 78.27% and the FFA content of 4%, attained at the reaction temperature, catalyst concentration, and reaction time of 59.09℃, 1.98% g/g nyamplung seed oil, and 119.95 minutes, respectively. Extrapolation using RSM predicted that the targeted FFA content of 2% could be obtained at the temperature, catalyst concentration, and reaction time of 58.97℃, 3%, and 194.9 minutes, respectively, with a fixed molar ratio of oil to methanol of 1:30. The results disclosed that RSM is an appropriate statistical method for optimising the process variable in the esterification reaction to obtain the targeted value of FFA.


REAKTOR ◽  
2016 ◽  
Vol 16 (3) ◽  
pp. 109 ◽  
Author(s):  
Maria Ulfah ◽  
S Subagjo

POTENTIAL OF SULFATET ALUMINA-HETEROGENEOUS ACID CATALYST IN ESTERIFICATION RUBBER SEED OIL.  Two tipe of  catalysts have been synthesed and evaluated ( free fatty acid conversion) in esterification of rubber seed oil. The first and the second catalyst have content SO3 8,821 % and 40,715 %, respectly. The optimum condition of reaction studied : volume ratio methanol/oil  0,9-1,8 v/v;  catalyst concentration 1,67-10 % wt/v; time of reaction 1-7 hours and temperature of reaction 50-70 oC. This study  showed, the second catalyst  more active than the first catalyst. Maximum conversion from esterification reaction of rubber seed oil of the first and the second catalyst are 75 % and  97 %, respectly. The optimum condition of reaction achieved at volume ratio methanol/oil  1,8 v/v;  catalyst concentration 1,67 % wt/v; time of reaction 7 hours and temperature of reaction 70 oC.   Keywords: sulfated alumina, free fatty acid, eterification, rubber seed oil.AbstrakDua tipe katalis alumina tersulfatasi telah disintesis dan dievaluasi kinerjanya (berupa konversi Asam Lemak Bebas, ALB) pada reaksi esterifikasi asam lemak bebas minyak biji karet. Katalis tipe 1 dan tipe 2 berturut-turut memiliki kandungan SO3 8,821 % dan 40,715 %.  Kondisi optimasi reaksi yang dipelajari: rasio volume metanol/minyak 0,9-1,8 v/v; konsentrasi katalis 1,67-10 % b/v; waktu reaksi 1-7 jam dan temperatur reaksi 50-70 oC.  Hasil penelitian menunjukkan katalis tipe 2 lebih aktif dari tipe 1. Konversi ALB maksimum  dari reaksi esterifikasi minyak biji karet  dengan katalis tipe 1 dan tipe 2  berturut-turut 75 % dan 97 %.  Kondisi  optimum reaksi tersebut dicapai pada rasio volume metanol/minyak 1,8; konsentrasi katalis/minyak 1,67 % b/v; lama reaksi 7 jam dan temperatur reaksi 70 oC. Kata kunci: alumina tersulfatasi, asam lemak bebas, esterifikasi, minyak biji karet


2009 ◽  
Vol 6 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Xiu-Yan Pang ◽  
Ting-Ting You

Biodiesel was obtained through transesterification of animal oil and ethanol under the catalysis of SO42-/ TiO2We have inspected the activation of SO42-/ TiO2prepared under different dipping vitriol concentration,baking activation temperature. The optimum conditions to prepare SO42-/ TiO2are; dipping vitriol concentration of TiCl4 hydrolysis product is 1.5 mol / L, baking activation temperature for this catalyst takes 500°C. It can guarantee the catalyst has a smaller size and a higher load of vitriol. With animal oil as raw materials, ethanol as transesterifying agent and SO42-/ TiO2as catalyst, the influence of reaction time, mass ratio of ethanol to oil and the dosage of catalyst were investigated. Optimum condition to obtain biodiesel was studied through orthogonal experiment, and it is listed as follow: mass ratio of ethanol to oil is 1.5:1.0, dosage of catalyst is 30 g SO42-/ TiO2versusper 100 g animal oil, and reaction time is 8.0 h when reaction temperature is controlled as 80°C. The yield of biodiesel is 0.796 g/g under the above condition. SO42-/ TiO2can be used as an effective catalyst during transesterification of animal oil and ethanol, and it can be reused


Konversi ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Nove Kartika Erliyanti ◽  
Afida Kartika Sari ◽  
Achmad Chumaidi ◽  
Rachmad Ramadhan Yogaswara ◽  
Erwan Adi Saputro

The purpose of this study was to determine the effect of KOH concentration and reaction time on the flash point and pour point of biodiesel from kapok seed oil. The biodiesel transesterification process is carried out in a batch reactor equipped with stirrer. The first step in this research is to reduce the free fatty acid content (esterification process). The second step is transesterification of biodiesel from kapok seed oil. The concentrations of KOH used in this research were 0.5, 1.0, 1.5, and 2.0% by weight of the oil and the reaction time were 0.25, 0.5, 1.0, and 1.5 hours. The operating conditions used in this study were a temperature of 60 oC and a pressure of 4 bar. The results showed that the concentration of KOH and reaction time had a significant effect on the flash point and pour point of biodiesel. The best flash point and pour point were obtained at a concentration of 0.5% KOH and a reaction time of 1.5 hours, which were 163 oC and -8 oC.


2020 ◽  
Vol 33 (1) ◽  
pp. 67-75
Author(s):  
Nurazira Mohd Nor ◽  
Nadia Salih ◽  
Jumat Salimon

In the presence of a catalyst, p-toluenesulfonic acid (PTSA), the ring of epoxidized palm oil (EPO) was opened using oleic acid (OA). The optimization effects of different process variables including the mol ratio of EPO/OA, reaction temperature, PTSA percentage and reaction time was performed by response surface methodology (RSM). To assess the effects of process variables and interactions among them, a D-optimal design was used as an RSM tool to acquire the maximum response value. The following are the optimum conditions achieved at the reaction time of 4.73 h in the RSM study: 1.02% PTSA, 3 EPO/OA mol ratio and 119.14 ºC reaction temperature. These conditions resulted in 84% yield, 0.041% oxirane oxygen content (OOC), 59.4 mg/g iodine value (IV), and118.7 mg/g hydroxyl value (HV). The results are in a excellent agreement with the values predicted using a regression model.


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
C.O. Ajenu ◽  
M.E. Ukhun ◽  
C. Imoisi ◽  
E.E. Imhontu ◽  
L.E. Irede ◽  
...  

The physical value of oil depends upon its chemical composition, even today these values play a vital role while using different oil for industrial products and also, despite the vast nutritional and medicinal significance of egusi melon, there are little details on the shell life and stability of its oil over time. Therefore, the influence of time and temperature on melon seed oil was investigated at temperatures of 0oC and 30oC at different weeks to ascertain its physicochemical value and storage stability. For week zero, at 0oC and ambient temperature (30oC), the result revealed iodine value 124.09, Acid value 3.64 mgNaOH/g, Free Fatty Acid value 1.84 mgNaOH/g, Saponification 217.35 mgKOH/g, Peroxide value 1.25 mg/g oil, pH 5.89 and thiobarbituric acid value 0.1383 respectively. In the 5th week, at 30oC, the result revealed iodine value 91.1543, acid value 12.8921 mgNaOH/g, free fatty acid value 6.4988 mgNaOH/g, Saponification 346.42 mgKOH/g, Peroxide value 9.5mg/g oil, pH 3.2 and thiobarbituric acid value 0.413 respectively. Also at 0oC in the 5th week, the results were observed as follow: Iodine value 102.53, Acid value 7.96 mgNaOH/g, Free Fatty Acid value 4.01 mgNaOH/g, saponification 287.51 mgKOH/g, Peroxide value 6.1 mg/g oil, pH 5.05, and thiobarbituric acid value 0.2658 respectively. Refrigeration (0oC) of oil reduced the rate of most of the oxidative deterioration that produces rancidity. These values are within recommended range for edible oils. These results indicate that egusi melon oil could be a good source of table oil. The statistical results show that there was a significant difference between the melon seed oil stored at 0oC and 30oC (P < 0.001).


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


Fuel ◽  
2014 ◽  
Vol 120 ◽  
pp. 195-201 ◽  
Author(s):  
Huei Ruey Ong ◽  
Maksudur R. Khan ◽  
M.N.K. Chowdhury ◽  
Abu Yousuf ◽  
Chin Kui Cheng

2012 ◽  
Vol 12 (1) ◽  
pp. 59 ◽  
Author(s):  
Dewa G Katja

KUALITAS MINYAK BUNGA MATAHARI KOMERSIAL DAN MINYAK HASIL EKSTRAKSI BIJI BUNGA MATAHARI (Helianthus annuus L.) ABSTRAK Minyak komersial dan minyak hasil ekstrasi dari biji bunga matahari melalui uji kadar air, kadar asam lemak bebas, bilangan peroksida. Analisis hasil ekstrak biji bunga matahari diperoleh kadar air 0,43%, kadar asam lemak bebas 0,47% dan bilangan persoksida 5,22 mek/kg. analisis minyak komersial diperoleh kadar air 0,21%, kadar asam lemak bebas 0,28% dan bilangan peroksida 4,18 mek/kg. Hasil analisis dengan kromatografi gas kedua sampel menunjukkan kadar asam lemak bebas berbeda.       Berdasarkan uji kualitas yang dilakukan terhadap kedua sampel yang dianalisis terdapat hasil yang diperoleh tidak memenuhi syarat yang ditentukan yakni kadar asam lemak bebas 0,08% dan bilangan peroksida 2 mek/kg. Kata kunci: Asam lemak bebas, bilangan proksida, minyak biji bunga matahari  QUALITY OF COMMERCIAL SUNFLOWER OIL AND OIL EXTRACTION SEEDS SUNFLOWER (Helianthus annuus L.) ABSTRACT Experimental study of analyzing the extract oil from sunflower seed compare with the commercial sunflower seed oil according to the company standard which includes determining of moisture content, free fatty acid content, peroxide value and the fatty acids compositions is reported in this paper. The result show that the moisture content of the extract oil is 0,43%, free fatly acid content is 0,47%, and the peroxide value is 5,22% mek/Kg. For the commercial sunflower seed oil company product that is 0,21% for the moisture, free fatty acid is 0,28% and the peroxide value is 4,89 mek/Kg. The gas chromatography analysis indicated that the most fatty acid from both samples is linoleic acid. The quality of the extract sunflower seed oil has not been improved to conform with the commercial quality according to the company standard, that is 0,08% for the free fatty acid and 2 mek/Kg for the peroxide value. Keywords: Free fatty acid, peroxide value, sunflower seeds oil


Sign in / Sign up

Export Citation Format

Share Document