scholarly journals Design of a Takagi-Sugeno Fuzzy Regulator for a Set of Operation Points

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Máira P. A. Santim ◽  
Marcelo C. M. Teixeira ◽  
Wallysonn A. de Souza ◽  
Rodrigo Cardim ◽  
Edvaldo Assunção

The paper proposes a new design method based on linear matrix inequalities (LMIs) for tracking constant signals (regulation) considering nonlinear plants described by the Takagi-Sugeno fuzzy models. The procedure consists in designing a single controller that stabilizes the system at operation points belonging to a certain range or region, without the need of remaking the design of the controller gains at each new chosen equilibrium point. The control system design of a magnetic levitator illustrates the proposed methodology.

2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Ze Li ◽  
Xin-Hao Yang

This paper is concerned with the problem of the robustH∞filtering for the Takagi-Sugeno (T-S) fuzzy stochastic systems with bounded parameter uncertainties. For a given T-S fuzzy stochastic system, this paper focuses on the stochastically mean-square stability of the filtering error system and theH∞performance level of the output error and the disturbance input. The design method for delay-dependent filter is developed based on linear matrix inequalities. Finally, the effectiveness of the proposed methods is substantiated with an illustrative example.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2221 ◽  
Author(s):  
Himanshukumar R. Patel ◽  
Vipul A. Shah

This paper deals with a methodical design approach of fault-tolerant controller that gives assurance for the the stabilization and acceptable control performance of the nonlinear systems which can be described by Takagi–Sugeno (T–S) fuzzy models. Takagi–Sugeno fuzzy model gives a unique edge that allows us to apply the traditional linear system theory for the investigation and blend of nonlinear systems by linear models in a different state space region. The overall fuzzy model of the nonlinear system is obtained by fuzzy combination of the all linear models. After that, based on this linear model, we employ parallel distributed compensation for designing linear controllers for each linear model. Also this paper reports of the T–S fuzzy system with less conservative stabilization condition which gives decent performance. However, the controller synthesis for nonlinear systems described by the T–S fuzzy model is a complicated task, which can be reduced to convex problems linking with linear matrix inequalities (LMIs). Further sufficient conservative stabilization conditions are represented by a set of LMIs for the Takagi–Sugeno fuzzy control systems, which can be solved by using MATLAB software. Two-rule T–S fuzzy model is used to describe the nonlinear system and this system demonstrated with proposed fault-tolerant control scheme. The proposed fault-tolerant controller implemented and validated on three interconnected conical tank system with two constraints in terms of faults, one issed to build the actuator and sond is system component (leak) respectively. The MATLAB Simulink platform with linear fuzzy models and an LMI Toolbox was used to solve the LMIs and determine the controller gains subject to the proposed design approach.


2007 ◽  
Vol 11 (2) ◽  
pp. 149-152
Author(s):  
Yohei Nasuno ◽  
Etsuro Shimizu ◽  
Masanori Ito ◽  
Ikuo Yamamoto ◽  
Satoshi Tsukioka ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wallysonn Alves de Souza ◽  
Marcelo Carvalho Minhoto Teixeira ◽  
Máira Peres Alves Santim ◽  
Rodrigo Cardim ◽  
Edvaldo Assunção

The paper proposes a new switched control design method for some classes of uncertain nonlinear plants described by Takagi-Sugeno fuzzy models. This method uses a quadratic Lyapunov function to design the feedback controller gains based on linear matrix inequalities (LMIs). The controller gain is chosen by a switching law that returns the smallest value of the time derivative of the Lyapunov function. The proposed methodology eliminates the need to find the membership function expressions to implement the control laws. The control designs of a ball-and-beam system and of a magnetic levitator illustrate the procedure.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Dušan Krokavec ◽  
Anna Filasová

The paper presents new conditions suitable in design of a stabilizing output controller for a class of continuous-time nonlinear systems, represented by Takagi-Sugeno models. Taking into account the affine properties of the TS model structure and applying the fuzzy control scheme relating to the parallel distributed output compensators, the sufficient design conditions are outlined in terms of linear matrix inequalities. The proposed procedure decouples the Lyapunov matrix and the system parameter matrices in the LMIs and guarantees global stability of the system. Simulation result illustrates the design procedure and demonstrates the performances of the proposed design method.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Dušan Krokavec ◽  
Anna Filasová

The paper presents conditions suitable in design giving quadratic performances to stabilizing controllers for given class of continuous-time nonlinear systems, represented by Takagi-Sugeno models. Based on extended Lyapunov function and slack matrices, the design conditions are outlined in the terms of linear matrix inequalities to possess a stable structure closest to LQ performance, if premise variables are measurable. Simulation results illustrate the design procedure and demonstrate the performances of the proposed control design method.


Sign in / Sign up

Export Citation Format

Share Document