scholarly journals NBM-HD-1: A Novel Histone Deacetylase Inhibitor with Anticancer Activity

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wei-Jan Huang ◽  
Yu-Chih Liang ◽  
Shuang-En Chuang ◽  
Li-Ling Chi ◽  
Chi-Yun Lee ◽  
...  

HDAC inhibitors (HDACis) have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP), and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231) and rat glioma cells (C6), with an IC50ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1), gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1,p21(Waf1/Cip1)gene expression had markedly increased whilecyclin B1andD1gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor genep53in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activityin vitroandin vivo.

2019 ◽  
Vol 18 ◽  
pp. 153473541988915 ◽  
Author(s):  
Ivan Ruvinov ◽  
Christopher Nguyen ◽  
Benjamin Scaria ◽  
Caleb Vegh ◽  
Ola Zaitoon ◽  
...  

Current chemotherapeutics for metastatic colorectal cancers have limited success and are extremely toxic due to nonselective targeting. Some natural extracts have been traditionally taken and have shown anticancer activity. These extracts have multiple phytochemicals that can target different pathways selectively in cancer cells. We have shown previously that lemongrass ( Cymbopogon citratus) extract is effective at inducing cell death in human lymphomas. However, the efficacy of lemongrass extract on human colorectal cancer has not been investigated. Furthermore, its interactions with current chemotherapies for colon cancer is unknown. In this article, we report the anticancer effects of ethanolic lemongrass extract in colorectal cancer models, and importantly, its interactions with FOLFOX and Taxol. Lemongrass extract induced apoptosis in colon cancer cells in a time and dose-dependent manner without harming healthy cells in vitro. Oral administration of lemongrass extract was well tolerated and effective at inhibiting colon cancer xenograft growth in mice. It enhanced the anticancer efficacy of FOLFOX and, interestingly, inhibited FOLFOX-related weight loss in animals given the combination treatment. Furthermore, feeding lemongrass extract to APCmin/+ transgenic mice led to the reduction of intestinal tumors, indicating its preventative potential. Therefore, this natural extract has potential to be developed as a supplemental treatment for colorectal cancer.


2020 ◽  
Vol 20 (15) ◽  
pp. 1559-1571 ◽  
Author(s):  
Sumit Tahlan ◽  
Balasubramanian Narasimhan ◽  
Siong Meng Lim ◽  
Kalavathy Ramasamy ◽  
Vasudevan Mani ◽  
...  

Background: Various analogues of benzimidazole are found to be biologically and therapeutically potent against several ailments. Benzimidazole when attached with heterocyclic rings has shown wide range of potential activities. So, from the above provided facts, we altered benzimidazole derivatives so that more potent antagonists could be developed. In the search for a new category of antimicrobial and anticancer agents, novel azomethine of 2-mercaptobenzimidazole derived from 3-(2- (1H-benzo[d]imidazol-2-ylthio)acetamido)benzohydrazide were synthesized. Results and Discussion: The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug. Conclusion: In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14635-e14635
Author(s):  
Shiran Shapira ◽  
Ilana Boustanai ◽  
Dina Kazanov ◽  
Ahmad Fokra ◽  
Ezra Bernstein ◽  
...  

e14635 Background: Inactivation of P53 and activation of ras are frequent genetic alterations in cancer. We have shown in vitro and in vivo, that the TA system can selectively and effectively eradicate RAS-mutated cancer cells. Aim: Selective killing of cancer cells while sparing the normal cells based on tumor genetic signature. Methods: A “first generation” ΔE1/ΔE3 human type-5 adenoviral-vectors for gene delivery were designed and constructed to specifically target cancer cells. They are designated as "PY4-mazF-mCherry" (PY4, ras responsive element), "ΔPY4-mazF-mCherry" (control viruses) and "RGC-mazE-IRES-GFP" (RGC, P53 responsive element). Their potency was tested in vitro, by the enzymatic MTT assay, microscopic observation, colony formation assay and FACS analysis, and in a xenograft model of CRC. Next, we generated, small natural vesicles, exosomes, that directly targeted cancer through specific small antibody fragments against CD24 that is expressed in most cancer cells and rarely on normal cells. Results: The TA system ("PY4-mazF-mCherry"+"RGC-mazE-IRES-GFP") induced a massive cell death, in a dose-dependent manner in vitro, 69% as compared to 19% in control co-infected ("ΔPY4-mazF-mCherry"+"RGC-mazE-IRES-GFP") HCT116 CRC cells (mutated RAS and p53). In vivo, growth of HCT116-/- ( KRASmutand P53mut) and HCT116+/+ ( KRASmut and P53wt) tumors were significantly inhibited (70% and 65%, respectively). Conclusions: 1. Abusing the P53 genetic status and the activated Ras pathway holds promising effective and safe strategy to target tumor cells while sparing normal tissues. 2. It is a proof of concept for personalized cancer therapy based on the tumor genetic profile.


2016 ◽  
Author(s):  
Elżbieta Hejchman ◽  
Barbara Sowirka ◽  
Magdalena Tomczyk ◽  
Dorota Maciejewska

Based on World Health Organization (WHO) report, it was estimated that one in five people before age 75 will suffer from cancer during their lifetime, and more than 13 million cancers death will happen in 2030. Chemotherapy is a basic approach for the treatment of cancer diseases. However, because of drug resistance and considerable side effects drug-induced toxicity, the discovery of new metal analogs with promising activity and high therapeutic index is an urgent need. The fundamental role of copper and the recognition of its complexes as important bioactive compounds in vitro and in vivo aroused an ever-increasing interest in these agents as potential drugs for therapeutic intervention in various diseases. Schiff bases are a critical class of compounds in medical chemistry that have demonstrated significant chemotherapeutic and antibacterial application. Schiff base Cu(II) complexes revealed great potential for antiproliferative, antibacterial, and gastroprotective activity. Coumarins are a wide class of natural and synthetic compounds that showed diverse pharmacological activities including anticancer activity. Among the wide variety of coumarins, 7-hydroxycoumarin derivatives have been shown to possess desirable antiproliferative activities. In particular, their antibacterial, antifungal and anticancer activities make the compounds attractive for further derivatization and screening as novel therapeutic agents. Taking these compounds as lead, we have designed and synthesized a series of new copper(II) complexes with coumarin-derived Schiff base ligands. Two series of Schiff bases were prepared by condensation of 8-formyl-7-hydroxy-4-methylcoumarin and 8-acetyl-7-hydroxy-4-methylcoumarin with p-substituted aniline derivatives. These compounds were used as ligands in the synthesis of copper(II) complexes. The obtained Schiff bases as well as copper complexes are mostly novel molecules. Only the products of condensation 8-formyl-7-hydroxy-4-methylcoumarin with p-toluidine and 8-acetyl-7-hydroxy-4-methylcoumarin with p-toluidine and its copper(II) complex were synthesized, but the anticancer activity of these compounds was not determined. The assay of their cytotoxic activity is in progress. Preliminary, we have identified two copper(II) coordination compounds of 7-hydroxy-8-[1-(4-methoxyphenyl imino)ethyl]-4-methyl-2H-chromen-2-one and 7-hydroxy-8-[1-(4-hydroxyphenyloimino)ethyl]-4-methyl-2H- chromen-2-one having dose-dependent antiproliferative activity on HeLa cancer cell line. Additionally, the Schiff bases – derivatives of substituted salicylaldehydes and 2-hydroxyacetophenones condensed with appropriate anilines were prepared. Such compounds have been reported in scientific papers, their copper complexes have not been assayed yet, and may serve as an useful tool in QSAR investigation.


2016 ◽  
Author(s):  
Elżbieta Hejchman ◽  
Barbara Sowirka ◽  
Magdalena Tomczyk ◽  
Dorota Maciejewska

Based on World Health Organization (WHO) report, it was estimated that one in five people before age 75 will suffer from cancer during their lifetime, and more than 13 million cancers death will happen in 2030. Chemotherapy is a basic approach for the treatment of cancer diseases. However, because of drug resistance and considerable side effects drug-induced toxicity, the discovery of new metal analogs with promising activity and high therapeutic index is an urgent need. The fundamental role of copper and the recognition of its complexes as important bioactive compounds in vitro and in vivo aroused an ever-increasing interest in these agents as potential drugs for therapeutic intervention in various diseases. Schiff bases are a critical class of compounds in medical chemistry that have demonstrated significant chemotherapeutic and antibacterial application. Schiff base Cu(II) complexes revealed great potential for antiproliferative, antibacterial, and gastroprotective activity. Coumarins are a wide class of natural and synthetic compounds that showed diverse pharmacological activities including anticancer activity. Among the wide variety of coumarins, 7-hydroxycoumarin derivatives have been shown to possess desirable antiproliferative activities. In particular, their antibacterial, antifungal and anticancer activities make the compounds attractive for further derivatization and screening as novel therapeutic agents. Taking these compounds as lead, we have designed and synthesized a series of new copper(II) complexes with coumarin-derived Schiff base ligands. Two series of Schiff bases were prepared by condensation of 8-formyl-7-hydroxy-4-methylcoumarin and 8-acetyl-7-hydroxy-4-methylcoumarin with p-substituted aniline derivatives. These compounds were used as ligands in the synthesis of copper(II) complexes. The obtained Schiff bases as well as copper complexes are mostly novel molecules. Only the products of condensation 8-formyl-7-hydroxy-4-methylcoumarin with p-toluidine and 8-acetyl-7-hydroxy-4-methylcoumarin with p-toluidine and its copper(II) complex were synthesized, but the anticancer activity of these compounds was not determined. The assay of their cytotoxic activity is in progress. Preliminary, we have identified two copper(II) coordination compounds of 7-hydroxy-8-[1-(4-methoxyphenyl imino)ethyl]-4-methyl-2H-chromen-2-one and 7-hydroxy-8-[1-(4-hydroxyphenyloimino)ethyl]-4-methyl-2H- chromen-2-one having dose-dependent antiproliferative activity on HeLa cancer cell line. Additionally, the Schiff bases – derivatives of substituted salicylaldehydes and 2-hydroxyacetophenones condensed with appropriate anilines were prepared. Such compounds have been reported in scientific papers, their copper complexes have not been assayed yet, and may serve as an useful tool in QSAR investigation.


2020 ◽  
Vol 12 (8) ◽  
pp. 655-672 ◽  
Author(s):  
Feifei Yang ◽  
Lina Han ◽  
Na Zhao ◽  
Yang Yang ◽  
Di Ge ◽  
...  

Aim:   Histone deacetylases (HDACs) are one of the validated targets for cancer treatments. In our previous work, we designed a series of bis-substituted aromatic amide HDAC inhibitors (HDACis), among which compounds 7 and 8 showed promising anticancer effects. However, the low solubilities prevented their subsequent developments. We developed additional thiophene-based hydroxamate HDACis in order to improve their physicochemical properties. Materials & methods: In vitro biological evaluations of these analogs revealed potent antiproliferative and antimigrated activities. More importantly, compound 10h exhibited excellent in vivo antitumor activities in MDA-MB-231 xenograft model mice. Furthermore, 10h showed better anticancer activities and drug-like properties than 7. Results & conclusion: Our results proved that thiophene-based hydroxamate HDACis can serve as a promising framework for developing potential anticancer agents.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Syam Prakash Somasekharan ◽  
Amal El-Naggar ◽  
Poul H. Sorensen ◽  
Yuzhuo Wang ◽  
Hongwei Cheng

Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma.In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells.In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted.


2020 ◽  
Vol 19 (1) ◽  
pp. 25-28
Author(s):  
Suciati ◽  
Lusiana Arifianti

Marine sponges have been known as the source of natural products. Various metabolites with potent bioactivities have been reported from this organism. The current study aims to investigate the anticancer potency of three marine sponges namely Diacarnus debeauforti, Haliclona amboinensis and Agelas cavernosa collected from Barrang Lompo Island, South Sulawesi, Indonesia. The ethyl acetate extracts of the sponges were screened against T47D breast cancer cells and HeLa cervical cancer cells by using the MTT method. The results showed that these sponges demonstrated anticancer activity against both cancer cell lines. The lowest IC50 of 18.2 μg/ml was given by the extract of A. cavernosa against T47D cell line, while in the screening against HeLa cancer cell line, the extract of D. debeauforti revealed the highest potency with IC50 of 15.7 μg/ml. Our results suggested that the marine sponges namely D. debeauforti, H. amboinensis and A. cavernosa can be good candidates for the development of anticancer agents. Dhaka Univ. J. Pharm. Sci. 19(1): 25-28, 2020 (June)


2015 ◽  
Vol 15 (10) ◽  
pp. 7900-7906 ◽  
Author(s):  
Bong Joo Park ◽  
Kyong-Hoon Choi ◽  
Ki Chang Nam ◽  
Jeeeun Min ◽  
Kyu-Dong Lee ◽  
...  

This work reports the synthesis and the characterization of water-soluble and biocompatible photosensitizer (PS)-conjugated magnetic nanoparticles composed of a cobalt ferrite (CoFe2O4) magnetic core coated with a biocompatible hematoporphyrin (HP) shell. The photo-functional cobalt ferrite magnetic nanoparticles (CoFe2O4@HP) were uniform in size, stable against PS leaching, and highly efficient in the photo-generation of cytotoxic singlet oxygen under visible light. With the CoFe2O4@HP, we acquired in vitro MR images of cancer cells (PC-3) and confirmed good biocompatibility of the CoFe2O4@HP in both normal and cancer cells. In addition, we confirmed the potential of the CoFe2O4@HP as an agent for photodynamic therapy (PDT) applications. The photodynamic anticancer activities in 25, 50, and 100 μg/mL of CoFe2O4@HP were measured and found to exceed 99% (99.0, 99.4, and 99.5%) (p <0.002). The photodynamic anticancer activity was 81.8% (p < 0.003). From these results, we suggest that our CoFe2O4@HP can be used safely as a type of photodynamic cancer therapy with potential as a therapeutic agent having good biocompatibility. Moreover, these photo-functional magnetic nanoparticles are highly promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3214
Author(s):  
Jui-Hua Lu ◽  
Yen-Ru Chou ◽  
Yue-Hua Deng ◽  
Mao-Suan Huang ◽  
Shaw-Ting Chien ◽  
...  

Traditional Chinese medicines Antler’s extract (A) and Ganoderma lucidum (G) and Antrodia Camphorata (A) have been known to individually contain a plethora of bioactive factors including triterpenoids, polysaccharides etc., exerting various curative impacts such as anti-inflammatory, anti-oxidative, anti-atherosclerotic and anti-viral activities. However, their combinatorial therapeutic efficacy for oral cancer has not been investigated. Hence, we synthesized a robust cocktail called AGA and investigated its anti-oral cancer potential in vitro and in vivo. An MTT assay revealed the IC50 of AGA to be about 15 mg at 72 h. Therefore, 10 mg and 20 mg doses were selected to study the effect of AGA. The AGA significantly inhibited proliferation of oral cancer cells (HSC3, SAS, and OECM-1) in a dose- and time-dependent manner. AGA retarded cell cycle regulators (CDK4, CDK6, cyclin A, B1, D1 and E2) and apoptosis inhibitory protein Bcl-2, but enhanced pro-apoptotic protein Bax and a higher percentage of cells in Sub-G1 phase. Mechanistically, AGA suppressed all EMT markers; consequently, it decreased the migration ability of cancer cells. AGA significantly reduced xenograft tumor growth in nude mice with no adverse events in liver and renal toxicity. Conclusively, AGA strongly inhibited oral cancer through inducing apoptosis and inhibiting the migration and promotion of cell cycle arrest at subG1 phase, which may be mediated primarily via cocktail-contained triterpenoids and polysaccharides.


Sign in / Sign up

Export Citation Format

Share Document