scholarly journals Robustness Maximization of Parallel Multichannel Systems

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Jean-Yves Baudais ◽  
Fahad Syed Muhammad ◽  
Jean-François Hélard

Bit error rate (BER) minimization and SNR-gap maximization, two robustness optimization problems, are solved, under average power and bitrate constraints, according to the waterfilling policy. Under peak power constraint the solutions differ and this paper gives bit-loading solutions of both robustness optimization problems over independent parallel channels. The study is based on analytical approach, using generalized Lagrangian relaxation tool, and on greedy-type algorithm approach. Tight BER expressions are used for square and rectangular quadrature amplitude modulations. Integer bit solution of analytical continuous bitrates is performed with a new generalized secant method. The asymptotic convergence of both robustness optimizations is proved for both analytical and algorithmic approaches. We also prove that, in the conventional margin maximization problem, the equivalence between SNR-gap maximization and power minimization does not hold with peak-power limitation. Based on a defined dissimilarity measure, bit-loading solutions are compared over Rayleigh fading channel for multicarrier systems. Simulation results confirm the asymptotic convergence of both resource allocation policies. In nonasymptotic regime the resource allocation policies can be interchanged depending on the robustness measure and on the operating point of the communication system. The low computational effort leads to a good trade-off between performance and complexity.

Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
Mehmetcan Akbulut ◽  
Leonid Kotov ◽  
Kort Wiersma ◽  
Jie Zong ◽  
Maohe Li ◽  
...  

We report on an eye-safe, transform-limited, millijoule energy, and high average power fiber laser. The high gain and short length of the NP phosphate-glass fibers enable the SBS-free operation with kW level peak power. The output energy is up to 1.3 mJ, and the average power is up to 23 W at an 18 kHz repetition rate with 600 ns pulses (peak power > 2.1 kW). The PER is ≈16 dB and the M2 of the beam is 1.33 × 1.18. The coherent LIDAR Figure Of Merit (FOM) is 174 mJ*sqrt(Hz), which to our knowledge is the highest reported for a fiber laser. We also report 0.75 mJ energy and >3.7 kW peak power with down to 200 ns pulses and up to 1.21 mJ energy with a 3–5 kHz repetition rate operation of the current system.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yaoxin Li ◽  
Jing Liu ◽  
Guozheng Lin ◽  
Yueyuan Hou ◽  
Muyun Mou ◽  
...  

AbstractIn computer science, there exist a large number of optimization problems defined on graphs, that is to find a best node state configuration or a network structure, such that the designed objective function is optimized under some constraints. However, these problems are notorious for their hardness to solve, because most of them are NP-hard or NP-complete. Although traditional general methods such as simulated annealing (SA), genetic algorithms (GA), and so forth have been devised to these hard problems, their accuracy and time consumption are not satisfying in practice. In this work, we proposed a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks. By introducing Gumbel-softmax technique, we can optimize the objective function directly by gradient descent algorithm regardless of the discrete nature of variables. We also introduce evolution strategy to parallel version of our algorithm. We test our algorithm on four representative optimization problems on graph including modularity optimization from network science, Sherrington–Kirkpatrick (SK) model from statistical physics, maximum independent set (MIS) and minimum vertex cover (MVC) problem from combinatorial optimization on graph, and Influence Maximization problem from computational social science. High-quality solutions can be obtained with much less time-consuming compared to the traditional approaches.


Author(s):  
Yangyu Liu ◽  
Xue Cao ◽  
AnHua Xian ◽  
Guangmiao Liu ◽  
Wei zhou ◽  
...  

Abstract We demonstrate stable continuous-wave mode-locking (CWML) pulses around 1645nm by employing the home-made Er:YAG ceramic. By using a fiber laser and semiconductor saturable absorber mirror (SESAM) with modulation depth of 1.2%, we get ML pulses with the output average power up to 815 mW, the pulse width shortened as ~4 ps, and the peak power of 1.8 kW. With the SESAM of modulation depth of 2.4%, the second-order harmonic ML pulses were also obtained. As far as we know, this is the first report of CWML from Er3+-doped ceramics and also the shortest pulse duration in Er3+-doped solid-state oscillators.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
W. Hu ◽  
M. Li ◽  
S. Azarm ◽  
A. Almansoori

Many engineering optimization problems are multi-objective, constrained and have uncertainty in their inputs. For such problems it is desirable to obtain solutions that are multi-objectively optimum and robust. A robust solution is one that as a result of input uncertainty has variations in its objective and constraint functions which are within an acceptable range. This paper presents a new approximation-assisted MORO (AA-MORO) technique with interval uncertainty. The technique is a significant improvement, in terms of computational effort, over previously reported MORO techniques. AA-MORO includes an upper-level problem that solves a multi-objective optimization problem whose feasible domain is iteratively restricted by constraint cuts determined by a lower-level optimization problem. AA-MORO also includes an online approximation wherein optimal solutions from the upper- and lower-level optimization problems are used to iteratively improve an approximation to the objective and constraint functions. Several examples are used to test the proposed technique. The test results show that the proposed AA-MORO reasonably approximates solutions obtained from previous MORO approaches while its computational effort, in terms of the number of function calls, is significantly reduced compared to the previous approaches.


Author(s):  
Muhammad Irfan ◽  
Ayaz Ahmad ◽  
Raheel Ahmed

Single carrier frequency division multiple access (SC-FDMA) is a promising uplink transmission technique that has the characteristic of low peak to average power ratio. The mobile terminal uplink transmission depends on the batteries with limited power budget. Moreover, the increasing number of mobile users needs to be accommodated in the limited available radio spectrum. Therefore, efficient resource allocation schemes are essential for optimizing the energy consumption and improving the spectrum efficiency. This chapter presents a comprehensive and systematic survey of resource allocation in SC-FDMA networks. The survey is carried out under two major categories that include centralized and distributed approaches. The schemes are also classified under various rubrics including optimization objectives and constraints considered, single-cell and multi-cell scenarios, solution types, and perfect/imperfect channel knowledge-based schemes. The advantages and limitations pertaining to these categories/rubrics have been highlighted, and directions for future research are identified.


1999 ◽  
Vol 87 (5) ◽  
pp. 1758-1767 ◽  
Author(s):  
Samuel C. K. Lee ◽  
Cara N. Becker ◽  
Stuart A. Binder-Macleod

Stimulation trains that exploit the catchlike property [catchlike-inducing trains (CITs)] produce greater forces and rates of rise of force than do constant-frequency trains (CFTs) during isometric contractions and isovelocity movements. This study examined the effect of CITs during isotonic contractions in healthy subjects. Knee extension was electrically elicited against a load of 10% of maximum voluntary isometric contraction. The stimulation intensity was set to produce 20% of maximum voluntary isometric contraction. The muscle was tested before and after fatigue with a 6-pulse CFT and 6-pulse CITs that contained an initial doublet, triplet, or quadruplet. For prefatigue responses, the greatest isotonic performance was produced by CITs with initial doublets. When the muscles were fatigued, triplet CITs were best. CITs produce greater excursion, work, peak power, and average power than do CFTs, because CITs produced more rapid rates of rise of force. Faster rates of rise of force enabled the preload on the muscle to be exceeded earlier during the stimulation train.


2019 ◽  
Vol 11 (4) ◽  
pp. 1-12 ◽  
Author(s):  
Zhe Yin ◽  
Jingui Ma ◽  
Jing Wang ◽  
Peng Yuan ◽  
Guoqiang Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document