The Effect ofMsh2Knockdown on Toxicity Induced bytert-Butyl-hydroperoxide, Potassium Bromate, and Hydrogen Peroxide in Base Excision Repair Proficient and Deficient Cells
The DNA mismatch repair (MMR) and base excision repair (BER) systems are important determinants of cellular toxicity following exposure to agents that cause oxidative DNA damage. To examine the interactions between these different repair systems, we examined whether toxicity, induced byt-BOOH and KBrO3, differs in BER proficient (Mpg+/+,Nth1+/+) and deficient (Mpg−/−,Nth1−/−) mouse embryonic fibroblasts (MEFs) followingMsh2knockdown of between 79 and 88% using an shRNA expression vector.Msh2knockdown inNth1+/+cells had no effect ont-BOOH and KBrO3induced toxicity as assessed by an MTT assay; knockdown inNth1−/−cells resulted in increased resistance tot-BOOH and KBrO3, a result consistent with Nth1 removing oxidised pyrimidines.Msh2knockdown inMpg+/+cells had no effect ont-BOOH toxicity but increased resistance to KBrO3; inMpg−/−cells,Msh2knockdown increased cellular sensitivity to KBrO3but increased resistance to t-BOOH, suggesting a role forMpgin removing DNA damage induced by these agents. MSH2 dependent and independent pathways then determine cellular toxicity induced by oxidising agents. A complex interaction between MMR and BER repair systems, that is, exposure dependent, also exists to determine cellular toxicity.