scholarly journals Scaling-Base Drive Function Projective Synchronization between Different Fractional-Order Chaotic Systems

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Ping Zhou ◽  
Kun Huang
2011 ◽  
Vol 2011 ◽  
pp. 1-15
Author(s):  
Ping Zhou ◽  
Xiao-You Yang

An adaptive hybrid function projective synchronization (AHFPS) scheme between different fractional-order chaotic systems with uncertain system parameter is addressed in this paper. In this proposed scheme, the drive and response system could be synchronized up to a vector function factor. This proposed scheme is different with the function projective synchronization (FPS) scheme, in which the drive and response system could be synchronized up to a scaling function factor. The adaptive controller and the parameter update law are gained. Two examples are presented to demonstrate the effectiveness of the proposed scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chunde Yang ◽  
Hao Cai ◽  
Ping Zhou

A modified function projective synchronization for fractional-order chaotic system, called compound generalized function projective synchronization (CGFPS), is proposed theoretically in this paper. There are one scaling-drive system, more than one base-drive system, and one response system in the scheme of CGFPS, and the scaling function matrices come from multidrive systems. The proposed CGFPS technique is based on the stability theory of fractional-order system. Moreover, we achieve the CGFPS between three-driver chaotic systems, that is, the fractional-order Arneodo chaotic system, the fractional-order Chen chaotic system, and the fractional-order Lu chaotic system, and one response chaotic system, that is, the fractional-order Lorenz chaotic system. Numerical experiments are demonstrated to verify the effectiveness of the CGFPS scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hong-Juan Liu ◽  
Zhi-Liang Zhu ◽  
Hai Yu ◽  
Qian Zhu

The modified function projective synchronization of different dimensional fractional-order chaotic systems with known or unknown parameters is investigated in this paper. Based on the stability theorem of linear fractional-order systems, the adaptive controllers with corresponding parameter update laws for achieving the synchronization are given. The fractional-order chaotic system and hyperchaotic system are applied to achieve synchronization in both reduced order and increased order. The corresponding numerical results coincide with theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document