scholarly journals The Existence and Uniqueness of Solutions for a Class of Nonlinear Fractional Differential Equations with Infinite Delay

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu

We established the existence of a positive solution of nonlinear fractional differential equationsL(D)[x(t)−x(0)]=f(t,xt),t∈(0,b]with finite delayx(t)=ω(t),t∈[−τ,0], wherelimt→0f(t,xt)=+∞, that is,fis singular att=0andxt∈C([−τ,0],ℝ≥0). The operator ofL(D)involves the Riemann-Liouville fractional derivatives. In this problem, the initial conditions with fractional order and some relations among them were considered. The analysis rely on the alternative of the Leray-Schauder fixed point theorem, the Banach fixed point theorem, and the Arzela-Ascoli theorem in a cone.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 333 ◽  
Author(s):  
Kui Liu ◽  
Michal Fečkan ◽  
D. O’Regan ◽  
JinRong Wang

In this paper, the Hyers–Ulam stability of linear Caputo–Fabrizio fractional differential equation is established using the Laplace transform method. We also derive a generalized Hyers–Ulam stability result via the Gronwall inequality. In addition, we establish existence and uniqueness of solutions for nonlinear Caputo–Fabrizio fractional differential equations using the generalized Banach fixed point theorem and Schaefer’s fixed point theorem. Finally, two examples are given to illustrate our main results.


2018 ◽  
Vol 21 (4) ◽  
pp. 1120-1138 ◽  
Author(s):  
Devaraj Vivek ◽  
Kuppusamy Kanagarajan ◽  
Seenith Sivasundaram

Abstract In this paper, we study the existence and stability of Hilfer-type fractional differential equations (dynamic equations) on time scales. We obtain sufficient conditions for existence and uniqueness of solutions by using classical fixed point theorems such as Schauder's fixed point theorem and Banach fixed point theorem. In addition, Ulam stability of the proposed problem is also discussed. As in application, we provide an example to illustrate our main results.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Chunhai Kou ◽  
Jian Liu ◽  
Yan Ye

By using the Banach fixed point theorem and step method, we study the existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations. Meanwhile, by citing some counterexamples, it is pointed out that there exist a few defects in the proofs of the known results.


2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Jianjie Wang ◽  
Ali Mai ◽  
Hong Wang

Abstract This paper is mainly devoted to the study of one kind of nonlinear Schrödinger differential equations. Under the integrable boundary value condition, the existence and uniqueness of the solutions of this equation are discussed by using new Riesz representations of linear maps and the Schrödinger fixed point theorem.


2018 ◽  
Vol 1 (1) ◽  
pp. 21-36 ◽  
Author(s):  
Mısır J. Mardanov ◽  
Yagub A. Sharifov ◽  
Kamala E. Ismayilova

AbstractThis paper is devoted to a system of nonlinear impulsive differential equations with three-point boundary conditions. The Green function is constructed and considered original problem is reduced to the equivalent impulsive integral equations. Sufficient conditions are found for the existence and uniqueness of solutions for the boundary value problems for the first order nonlinear system of the impulsive ordinary differential equations with three-point boundary conditions. The Banach fixed point theorem is used to prove the existence and uniqueness of a solution of the problem and Schaefer’s fixed point theorem is used to prove the existence of a solution of the problem under consideration. We illustrate the application of the main results by two examples.


Author(s):  
Kazem Nouri ◽  
Marjan Nazari ◽  
Bagher Keramati

In this paper, by means of the Banach fixed point theorem and the Krasnoselskii's fixed point theorem, we investigate the existence of solutions for some fractional neutral functional integro-differential equations involving infinite delay. This paper deals with the fractional equations in the sense of Caputo fractional derivative and in the Banach spaces. Our results generalize the previous works on this issue. Also, an analytical example is presented to illustrate our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xi Fu ◽  
Xiaoyou Liu

This paper is concerned with the fractional separated boundary value problem of fractional differential equations with fractional impulsive conditions. By means of the Schaefer fixed point theorem, Banach fixed point theorem, and nonlinear alternative of Leray-Schauder type, some existence results are obtained. Examples are given to illustrate the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xi Fu ◽  
Xiaoyou Liu

This paper studies the existence results for nonseparated boundary value problems of fractional differential equations with fractional impulsive conditions. By means of Schaefer fixed point theorem, Banach fixed point theorem, and nonlinear alternative of Leray-Schauder type, some existence results are obtained. Examples are given to illustrate the results.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Mohamed Hannabou ◽  
Hilal Khalid

The study of coupled systems of hybrid fractional differential equations requires the attention of scientists for the exploration of their different important aspects. Our aim in this paper is to study the existence and uniqueness of the solution for impulsive hybrid fractional differential equations. The novelty of this work is the study of a coupled system of impulsive hybrid fractional differential equations with initial and boundary hybrid conditions. We used the classical fixed-point theorems such as the Banach fixed-point theorem and Leray–Schauder alternative fixed-point theorem for existence results. We also give an example of the main results.


Sign in / Sign up

Export Citation Format

Share Document