Synchronization of Coupled Networks with Uncertainties
Asymptotic synchronization for a class of coupled networks with nondelayed and delayed couplings is investigated. A distinct feature of the network is that all the dynamical nodes are affected by uncertain nonlinear nonidentical perturbations. In order to synchronize the network onto a given isolate trajectory, a novel adaptive controller is designed to overcome the effects of the nonidentical uncertain nonlinear perturbations. The designed controller has better robustness than classical adaptive controller, since it can realize the synchronization goal whether the nodes have these perturbations or not. Based on the Lyapunov stability theory and the Barbalat lemma, sufficient conditions guaranteeing the asymptotic synchronization of the coupled network are derived. Two examples with numerical simulations are given to illustrate the effectiveness of the theoretical results. Simulations also demonstrate that our adaptive controller has better robustness than existing ones.