scholarly journals Crocin Exhibits Antitumor Effects on Human Leukemia HL-60 Cells In Vitro and In Vivo

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yan Sun ◽  
Hui-Juan Xu ◽  
Yan-Xia Zhao ◽  
Ling-Zhen Wang ◽  
Li-Rong Sun ◽  
...  

Crocin is a carotenoid of the saffron extract that exhibits antitumor activity against many human tumors. However, the effects of crocin on HL-60 cells in vivo have not been evaluated. This study aimed to examine the effects of crocin on HL-60 cells in vitro and in vivo and investigate the underlying mechanisms. HL-60 cells were treated by crocin, and cell proliferation, apoptosis, and cell cycle profiles were examined by MTT assay, AO/EB staining, and flow cytometry, respectively. Furthermore, HL-60 cells were xenografted into nude mice and treated by crocin, the tumor weight and size were calculated, and the expression of Bcl-2 and Bax in xenografts was detected by immunohistochemical staining. The results showed that crocin (0.625–5 mg/mL) inhibited HL-60 cell proliferation and induced apoptosis and cell cycle arrest at G0/G1 phase, in a concentration and time-dependent manner. In addition, crocin (6.25, 25 mg/kg) inhibited the tumor weight and size of HL-60 xenografts in nude mice, inhibited Bcl-2 expression, and increased Bax expression in xenografts. In summary, crocin inhibits the proliferation and tumorigenicity of HL-60 cells, which may be mediated by the induction of apoptosis and cell cycle arrest and the regulation of Bcl-2 and Bax expression.

2005 ◽  
Vol 25 (12) ◽  
pp. 4993-5010 ◽  
Author(s):  
Xiaoqi Liu ◽  
Chin-Yo Lin ◽  
Ming Lei ◽  
Shi Yan ◽  
Tianhua Zhou ◽  
...  

ABSTRACT Experiments from several different organisms have demonstrated that polo-like kinases are involved in many aspects of mitosis and cytokinesis. Here, we provide evidence to show that Plk1 associates with chaperonin-containing TCP1 complex (CCT) both in vitro and in vivo. Silencing of CCT by use of RNA interference (RNAi) in mammalian cells inhibits cell proliferation, decreases cell viability, causes cell cycle arrest with 4N DNA content, and leads to apoptosis. Depletion of CCT in well-synchronized HeLa cells causes cell cycle arrest at G2, as demonstrated by a low mitotic index and Cdc2 activity. Complete depletion of Plk1 in well-synchronized cells also leads to G2 block, suggesting that misfolded Plk1 might be responsible for the failure of CCT-depleted cells to enter mitosis. Moreover, partial depletion of CCT or Plk1 leads to mitotic arrest. Finally, the CCT-depleted cells reenter the cell cycle upon reintroduction of the purified constitutively active form of Plk1, indicating that Plk1 might be a CCT substrate.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xinchen Yang ◽  
Shikun Yang ◽  
Jinhua Song ◽  
Wenjie Yang ◽  
Yang Ji ◽  
...  

AbstractGrowing evidence demonstrates that MicroRNAs (miRNAs) play an essential role in contributing to tumor development and progression. However, the underlying role and mechanisms of miR-23b-5p in hepatocellular carcinoma (HCC) formation remain unclear. Our study showed that miR-23b-5p was downregulated in the HCC tissues and cell lines, and lower expression of miR-23b-5p was associated with more severe tumor size and poorer survival. Gain- or loss-of-function assays demonstrated that miR-23b-5p induced G0/G1 cell cycle arrest and inhibited cell proliferation both in vitro and in vivo. qRT-PCR, western blot and luciferase assays verified that Mammalian transcription factor Forkhead Box M1 (FOXM1), upregulated in HCC specimens, was negatively correlated with miR-23b-5p expression and acted as a direct downstream target of miR-23b-5p. In addition, miR-23b-5p could regulate cyclin D1 and c-MYC expression by directly targeting FOXM1. Further study revealed that restoration of FOXM1 neutralized the cell cycle arrest and cell proliferation inhibition caused by miR-23b-5p. Taken together, our findings suggest that miR-23b-5p acted as a tumor suppressor role in HCC progression by targeting FOXM1 and may serve as a potential novel biomarker for HCC diagnosis and prognosis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1343-1343
Author(s):  
Oscar Quintana-Bustamante ◽  
S. Lan-Lan Smith ◽  
Jude Fitzgibbon ◽  
Dominique Bonnet

Abstract Acute Myeloid Leukemia (AML) is characterized by an abnormal hematopoietic differentiation and uncontrolled cell proliferation. Mutations in several transcription factors (TFs) have been implicated in the development of leukemia. One of these TFs is CCAAT/enhancer-binding protein-α (C/EBPα). In normal hematopoiesis, C/EBPα plays a central role to coordinate myeloid differentiation and growth arrest. C/EBPα is mutated in approximately 9% of AML; these mutations take place either in C or N terminal domains of the protein, although there are several familial cases of AML where both types of mutations have been found. We use C and/or N terminal C/EBPα mutations from one case of sporadic AML to investigate the role of each mutation in leukemic transformation (Smith et al., 2004, N Engl J Med 351, 2403–2407). Human lineage negative (Lin-) umbilical cord blood were transduced with lentiviral vectors carrying the wild type C/EBPα (WT), N terminal mutated C/EBPα (N-ter) or N and C terminal mutated (NC-ter) C/EBPα cloned from this sporadic case of AML. We observed differences in proliferation of transduced Lin- in vitro: WT C/EBPα expression resulted in G0 cell cycle arrest causing a progressive extinction of the transduced cells overtime; N-ter cells showed a higher proliferative advantage over untransduced cells. The NC-ter CEBPα cells like untransduced cells kept their levels throughout culture. Furthermore, when induced into myeloid differentiation in vitro, WT C/EBPα cells were mainly inducing fully mature granulocytes whereas N-ter C/EBPα was not able to induce terminal granulocytic differentiation; in contrast NC-ter C/EBPα did not increase myeloid differentiation. Additionally, their ability to form Colony Forming Units (CFUs) in primary, secondary and tertiary replating was also tested: WT transduced cells gave rise to few primary CFUs; contrary, N and NC-ter could generate both primary and secondary CFUs, but only NC-ter cells were able to produce CFUs in tertiary replating, indicating its ability to maintain undifferentiated hematopoietic progenitors in vitro. These results were confirmed using Long-Term Culture Initiating Cells (LTC-IC) where the NC-ter mutated cells showed the highest LTC-IC after 5 weeks. Finally, in vivo transplantation in NOD/SCID/β2mnull indicated that NC-ter mutated cells engraft better than WT and N-ter 8 week post- transplant. Serial transplantation experiments are underway to evaluate their self-renewal capacity. Our results confirmed some known functions of WT C/EBPα in human hematopoiesis, such as inducing myeloid differentiation and cell cycle arrest. On the other hand, we showed new functions for the C/EBPα mutants. The N-ter C/EBPα mutation caused an increase in cell proliferation and blockage of terminal granulocytic differentiation, whereas the NC-ter C/EBPα mutation increased the self-renewal capacity of progenitor/stem cells without having an influence on myeloid differentiation. This work provides further insight into the mechanisms by which different C/EBPα mutations induce AML.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Xiaolong Du ◽  
Yujing Zhao ◽  
Yongqian Ma ◽  
Hongshun Xing ◽  
Xingang Li

Objective. To investigate the possible development of radix hedysari polysaccharide as an antiglioma drug, we studied the effect of radix hedysari polysaccharide on glioma cells in vitro and the growth of glioma in nude mice and on the phagocytosis of macrophages in nude mice with glioma. Methods. The effect of radix hedysari polysaccharide on the growth of glioma was studied based on U251 cell line in vitro. The effect of radix hedysari polysaccharide on the growth of glioma was studied in vivo. The growth inhibition rate of radix hedysari polysaccharide on U251 cell line was determined by the MTT assay. The cell cycle of U251 was analyzed by flow cytometry. The expression of cytokines in U251 cells and tumor tissues was detected using PCR. The phagocytosis of macrophages in the serum of glioma nude mice was detected by Giemsa staining. TNF-α signaling pathway proteins in the serum of glioma nude mice were detected by ELISA. Results. Radix hedysari polysaccharide inhibited the growth of U251 cells, induced apoptosis in G1 phase by cell cycle arrest, and facilitated apoptosis in glioma mice by regulating cell cycle. Mice injected with radix hedysari polysaccharide showed delayed tumor growth and grew slowly. Radix hedysari polysaccharide enhanced the phagocytosis of macrophages in glioma nude mice. Radix hedysari polysaccharides could inhibit tumor development by regulating the immune function of tumor mice and affecting the TNF-α signaling pathway. Conclusion. Radix hedysari polysaccharide can effectively inhibit the growth of glioma and affect the TNF-α signaling pathway, thus playing an antiglioma role.


2020 ◽  
Vol 58 (2) ◽  
pp. 199-210
Author(s):  
Tingting Shi ◽  
Jian Gong ◽  
Koji Fujita ◽  
Noriko Nishiyama ◽  
Hisakazu Iwama ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Hong Zhang ◽  
Fang Tian ◽  
Pengjun Jiang ◽  
Shushu Qian ◽  
Xingbin Dai ◽  
...  

Solasonine, the main active ingredient of Solanum nigrum L., has been reported to exert extensive antitumor activity. However, the antitumor effects in acute monocytic leukemia and the exact mechanisms involved are unknown. In this study, we investigated the role of solasonine on inhibiting the progression of acute monocytic leukemia. Our findings showed that solasonine inhibited the proliferation of acute monocytic leukemic cell lines (THP-1 and MV4-11) in vitro. Solasonine promoted apoptosis and induced cell cycle arrest in the G2/M phase. Analysis of RNA-seq data suggested that solasonine correlated with increased expression of genes in the AMPK/FOXO3A pathway. Inhibition of AMPK with compound C followed by treatment with solasonine showed that solasonine reduced apoptosis, caused less cell cycle arrest, and inactivated the AMPK/FOXO3A axis in THP-1 and MV4-11 cells. Solasonine also inhibited tumor growth by the activation of the AMPK/FOXO3A axis. In conclusion, solasonine inhibited the progress of acute monocytic leukemia in vitro and in vivo and triggered the apoptosis and cell cycle arrest in the G2/M phase by upregulating the AMPK/FOXO3A pathway.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 878-878
Author(s):  
Aristeidis Chaidos ◽  
Valentina Caputo ◽  
Ilaria Marigo ◽  
Binbin Liu ◽  
Suhail Chaudhry ◽  
...  

Abstract Despite the therapeutic advances that followed the introduction of new immunomodulatory drugs and proteasome inhibitors, multiple myeloma (MM) remains an incurable malignancy and eventually all patients develop and succumb to chemo-refractory disease. The recently developed bromodomain and extra terminal (BET) protein inhibitors are novel agents targeting the acetyl-binding pockets of the BET family proteins BRD2-4 and BRDT. BET proteins activate transcription through their ability to bind to acetyl-modified lysine residues of histone tails, thereby serving as chromatin scaffolds that recruit the P-TEFb and PAFc1 complexes to Polymerase II (RNA Pol II), ensuring transcriptional initiation and elongation. In preclinical models, two classes of BET inhibitors, benzodiazepines (e.g JQ1) and quinolones (e.g. I-BET151), have been shown to have significant anti-proliferative activity against a variety of hematologic tumours. However translation of these data to molecules suitable for clinical development has yet to be disclosed. Herein, we tested the anti-myeloma activity and extended the mechanistic insights on two BET inhibitors: the chemical probe molecule I-BET151 and I-BET762, an orally active benzodiazepine suitable for clinical development. I-BET151 was tested in vitro in 6 myeloma cell lines (MMCL) with cytogenetic profiles representative of the most common translocations found in MM. I-BET151 induces apoptosis and cell cycle arrest in all MMCL in a time-dependent manner, with IC50 ranging from 133nM to 411nM at 72hrs. With the exception of KMS11 cells, IC50 was similar in stroma-free conditions and in co-culture with MS5 stromal cells. Similarly, I-BET151 induces apoptosis and cell cycle arrest in primary MM cells (n=4) cultured in the presence of IL-6 and stroma. In a subcutaneous MM mouse model, as compared to placebo, treatment with I-BET151 30mg/Kg/day i.p for 21 days resulted in 4-5 fold reduction in tumour size (p<0.001). Gene expression profiling of H929 and KMS12BM MMCL following treatment with I-BET151 confirmed downregulation of oncogenic MYC and MYC-dependent transcriptional programmes, but also of MYC-independent molecular signatures. The latter include abrogation of a myeloma specific, IRF4-dependent oncogenic programme. To explore the transcriptional events implicated in MYC downregulation, we treated OPM-2 myeloma cells with I-BET151. We found a dose-dependent inhibition of cell proliferation with commensurate reduction in MYC mRNA levels. Using ChiP-RQ-PCR analysis we found that upon treatment with I-BET151, BRD2, 3 and 4 occupancy at the IgH1enhancer that drives overexpression of the juxtaposed MYC decreased in a time-dependent manner as early as 2hr post–treatment. Furthermore, recruitment of CDK9 and PAF, critical components of the P-TEFb and PAFc1 complexes respectively, and binding of RNA Pol II were almost abolished, suggesting that I-BET151-mediated transcriptional MYC silencing involves inhibition of BRD2-4 binding. Finally, we show that I-BET762, an orally active molecule suitable for clinical development, potently inhibited cell proliferation in vitro in 10 MMCL, with IC50 <1µM and kinetics profile similar to JQ1 and I-BET151. The anti-myeloma activity of I-BET762 was tested in vivo in a systemic xenograft model generated by injecting OPM-2 cells into NOD-SCID mice. Escalating I-BET762 doses from 10 mg/Kg od to 30 mg/Kg every other day, were well tolerated with no clear impact on body weight as compared to vehicle control. Plasma human light chain concentration was significantly reduced depending on dose (p<0.001). Human CD38+ bone marrow cells were <1% in mice treated with 10mg/Kg od or higher dose vs 10% in the vehicle-treated animals (p≤0.001). I-BET762 treatment resulted in a significant survival advantage observed in all I-BET762-treated groups of mice (p<0.002). In conclusion, I-BET151 and I-BET762 show potent anti-myeloma activity in vitro and in vivo. I-BET151 inhibition of BRD2-4 binding mediates MYC transcriptional silencing and cell cycle arrest, but MYC-independent mechanism are also likely to mediate the I-BET biological effects in MM. Our data is the first example of an orally active BET inhibitor significantly delaying MM progression in vivo and provides strong rationale for clinical testing in phase I/II trials. Disclosures: Tough: GlaxoSmithKline: Employment. Smithers:GlaxoSmithKline: Employment. Bassil:GlaxoSmithKline: Employment. Chapman:GlaxoSmithKline: Employment. Harker:GlaxoSmithKline: Employment. Barbash:GlaxoSmithKline: Employment. Tummino:GlaxoSmithKline: Employment. Al-Mahdi:GlaxoSmithKline: Employment. Haynes:GlaxoSmithKline: Employment. Cutler:GlaxoSmithKline: Employment. Le:GlaxoSmithKline: Employment. Witherington:GlaxoSmithKline: Employment. Parr:GlaxoSmithKline: Employment. Prinjha:GlaxoSmithKline: Employment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kuangzheng Li ◽  
Xiaosheng Fan ◽  
Ziyi Yan ◽  
Jia Zhan ◽  
Fangyun Cao ◽  
...  

Abstract Background The implication of circular RNAs (circRNAs) in human cancers has aroused much concern. In this study, we investigated the function of circ_0000745 and its potential functional mechanisms in oral squamous cell carcinoma (OSCC) to further understand OSCC pathogenesis. Methods The expression of circ_0000745, miR-488 and cyclin D1 (CCND1) mRNA was measured by quantitative real-time polymerase chain reaction (qPCR). Cell proliferation capacity was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay. Cell cycle progression and cell apoptosis were determined by flow cytometry assay. The protein levels of CCND1, PCNA, Cleaved-caspase 3 and HuR were detected by western blot. Animal study was conducted to identify the role of circ_0000745 in vivo. The targeted relationship was verified by dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. Results The expression of circ_0000745 was increased in OSCC tissues and cells. Circ_0000745 downregulation inhibited OSCC cell proliferation and induced cell cycle arrest and apoptosis in vitro, as well as blocked tumor growth in vivo. MiR-488 was a target of circ_0000745, and circ_0000745 downregulation suppressed OSCC development by enriching miR-488. Besides, circ_0000745 regulated CCND1 expression by targeting miR-488. In addition, circ_0000745 regulated CCND1 expression by interacting with HuR protein. CCND1 knockdown also inhibited OSCC cell proliferation and induced cell cycle arrest and apoptosis in vitro, and CCND1 overexpression recovered the inhibitory effects on OSCC cell malignant behaviors caused by circ_0000745 downregulation. Conclusions Circ_0000745 regulated the expression of CCND1 partly by acting as miR-488 sponge and interacting with HuR protein, thus promoting the progression of OSCC.


Sign in / Sign up

Export Citation Format

Share Document