scholarly journals Maximum Likelihood Estimation of the VAR(1) Model Parameters with Missing Observations

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Helena Mouriño ◽  
Maria Isabel Barão

Missing-data problems are extremely common in practice. To achieve reliable inferential results, we need to take into account this feature of the data. Suppose that the univariate data set under analysis has missing observations. This paper examines the impact of selecting an auxiliary complete data set—whose underlying stochastic process is to some extent interdependent with the former—to improve the efficiency of the estimators for the relevant parameters of the model. The Vector AutoRegressive (VAR) Model has revealed to be an extremely useful tool in capturing the dynamics of bivariate time series. We propose maximum likelihood estimators for the parameters of the VAR(1) Model based on monotone missing data pattern. Estimators’ precision is also derived. Afterwards, we compare the bivariate modelling scheme with its univariate counterpart. More precisely, the univariate data set with missing observations will be modelled by an AutoRegressive Moving Average (ARMA(2,1)) Model. We will also analyse the behaviour of the AutoRegressive Model of order one, AR(1), due to its practical importance. We focus on the mean value of the main stochastic process. By simulation studies, we conclude that the estimator based on the VAR(1) Model is preferable to those derived from the univariate context.

Author(s):  
Tu Xu ◽  
Jorge Laval

This paper analyzes the impact of uphill grades on the acceleration drivers choose to impose on their vehicles. Statistical inference is made based on the maximum likelihood estimation of a two-regime stochastic car-following model using Next Generation SIMulation (NGSIM) data. Previous models assume that the loss in acceleration on uphill grades is given by the effects of gravity. We find evidence that this is not the case for car drivers, who tend to overcome half of the gravitational effects by using more engine power. Truck drivers only compensate for 5% of the loss, possibly because of limited engine power. This indicates not only that current models are severely overestimating the operational impacts that uphill grades have on regular vehicles, but also underestimating their environmental impacts. We also find that car-following model parameters are significantly different among shoulder, median and middle lanes but more data is needed to understand clearly why this happens.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


Author(s):  
Samuel U. Enogwe ◽  
Chisimkwuo John ◽  
Happiness O. Obiora-Ilouno ◽  
Chrisogonus K. Onyekwere

In this paper, we propose a new lifetime distribution called the generalized weighted Rama (GWR) distribution, which extends the two-parameter Rama distribution and has the Rama distribution as a special case. The GWR distribution has the ability to model data sets that have positive skewness and upside-down bathtub shape hazard rate. Expressions for mathematical and reliability properties of the GWR distribution have been derived. Estimation of parameters was achieved using the method of maximum likelihood estimation and a simulation was performed to verify the stability of the maximum likelihood estimates of the model parameters. The asymptotic confidence intervals of the parameters of the proposed distribution are obtained. The applicability of the GWR distribution was illustrated with a real data set and the results obtained show that the GWR distribution is a better candidate for the data than the other competing distributions being investigated.


2021 ◽  
pp. 096228022110432
Author(s):  
Ricardo R Petterle ◽  
Henrique A Laureano ◽  
Guilherme P da Silva ◽  
Wagner H Bonat

We propose a multivariate regression model to handle multiple continuous bounded outcomes. We adopted the maximum likelihood approach for parameter estimation and inference. The model is specified by the product of univariate probability distributions and the correlation between the response variables is obtained through the correlation matrix of the random intercepts. For modeling continuous bounded variables on the interval [Formula: see text] we considered the beta and unit gamma distributions. The main advantage of the proposed model is that we can easily combine different marginal distributions for the response variable vector. The computational implementation is performed using Template Model Builder, which combines the Laplace approximation with automatic differentiation. Therefore, the proposed approach allows us to estimate the model parameters quickly and efficiently. We conducted a simulation study to evaluate the computational implementation and the properties of the maximum likelihood estimators under different scenarios. Moreover, we investigate the impact of distribution misspecification in the proposed model. Our model was motivated by a data set with multiple continuous bounded outcomes, which refer to the body fat percentage measured at five regions of the body. Simulation studies and data analysis showed that the proposed model provides a general and rich framework to deal with multiple continuous bounded outcomes.


1992 ◽  
Vol 72 (4) ◽  
pp. 1541-1548 ◽  
Author(s):  
P. K. Weathersby ◽  
S. S. Survanshi ◽  
L. D. Homer ◽  
E. Parker ◽  
E. D. Thalmann

Probabilistic models and maximum likelihood estimation have been used to predict the occurrence of decompression sickness (DCS). We indicate a means of extending the maximum likelihood parameter estimation procedure to make use of knowledge of the time at which DCS occurs. Two models were compared in fitting a data set of nearly 1,000 exposures, in which greater than 50 cases of DCS have known times of symptom onset. The additional information provided by the time at which DCS occurred gave us better estimates of model parameters. It was also possible to discriminate between good models, which predict both the occurrence of DCS and the time at which symptoms occur, and poorer models, which may predict only the overall occurrence. The refined models may be useful in new applications for customizing decompression strategies during complex dives involving various times at several different depths. Conditional probabilities of DCS for such dives may be reckoned as the dive is taking place and the decompression strategy adjusted to circumstance. Some of the mechanistic implications and the assumptions needed for safe application of decompression strategies on the basis of conditional probabilities are discussed.


2017 ◽  
Vol 6 (3) ◽  
pp. 61
Author(s):  
Jalmar M. F. Carrasco ◽  
Gauss M Cordeiro

We propose and study a new five-parameter continuous distribution in the unit interval through a specific probability integral transform. The new distribution, under some parameter constraints, is an identified parametric model that includes as special cases six important models such as the Kumaraswamy and beta distributions. We obtain ordinary and incomplete moments, quantile and generating functions, mean deviations, R\'enyi entropy and moments of order statistics. The estimation of the model parameters is performed by maximum likelihood, and hypothesis tests are discussed. Additionally, through a simulation study we investigate the behavior of the maximum likelihood estimator, also we investigate the impact of ignoring identifiability problems. The usefulness of the proposed distribution is illustrated by means of a real data set.


2018 ◽  
Vol 55 (4) ◽  
pp. 498-522
Author(s):  
Morad Alizadeh ◽  
Mahdi Rasekhi ◽  
Haitham M. Yousof ◽  
Thiago G. Ramires ◽  
G. G. Hamedani

In this article, a new four-parameter model is introduced which can be used in mod- eling survival data and fatigue life studies. Its failure rate function can be increasing, decreasing, upside down and bathtub-shaped depending on its parameters. We derive explicit expressions for some of its statistical and mathematical quantities. Some useful characterizations are presented. Maximum likelihood method is used to estimate the model parameters. The censored maximum likelihood estimation is presented in the general case of the multi-censored data. We demonstrate empirically the importance and exibility of the new model in modeling a real data set.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1267
Author(s):  
Arash Sioofy Khoojine ◽  
Mahdi Shadabfar ◽  
Vahid Reza Hosseini ◽  
Hadi Kordestani

Predicting the way diseases spread in different societies has been thus far documented as one of the most important tools for control strategies and policy-making during a pandemic. This study is to propose a network autoregressive (NAR) model to forecast the number of total currently infected cases with coronavirus disease 2019 (COVID-19) in Iran until the end of December 2021 in view of the disease interactions within the neighboring countries in the region. For this purpose, the COVID-19 data were initially collected for seven regional nations, including Iran, Turkey, Iraq, Azerbaijan, Armenia, Afghanistan, and Pakistan. Thenceforth, a network was established over these countries, and the correlation of the disease data was calculated. Upon introducing the main structure of the NAR model, a mathematical platform was subsequently provided to further incorporate the correlation matrix into the prediction process. In addition, the maximum likelihood estimation (MLE) was utilized to determine the model parameters and optimize the forecasting accuracy. Thereafter, the number of infected cases up to December 2021 in Iran was predicted by importing the correlation matrix into the NAR model formed to observe the impact of the disease interactions in the neighboring countries. In addition, the autoregressive integrated moving average (ARIMA) was used as a benchmark to compare and validate the NAR model outcomes. The results reveal that COVID-19 data in Iran have passed the fifth peak and continue on a downward trend to bring the number of total currently infected cases below 480,000 by the end of 2021. Additionally, 20%, 50%, 80% and 95% quantiles are provided along with the point estimation to model the uncertainty in the forecast.


2020 ◽  
Vol 16 (2) ◽  
pp. 51-66
Author(s):  
A. Hassan ◽  
S. A. Dar ◽  
P. B. Ahmad ◽  
B. A. Para

AbstractIn this paper, we introduce a new generalization of Aradhana distribution called as Weighted Aradhana Distribution (WID). The statistical properties of this distribution are derived and the model parameters are estimated by maximum likelihood estimation. Simulation study of ML estimates of the parameters is carried out in R software. Finally, an application to real data set is presented to examine the significance of newly introduced model.


Sign in / Sign up

Export Citation Format

Share Document