scholarly journals Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ma Isabel Salazar ◽  
Marissa Pérez-García ◽  
Marisol Terreros-Tinoco ◽  
María Eugenia Castro-Mussot ◽  
Jaime Diegopérez-Ramírez ◽  
...  

An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV) pathogenesis and cellular tropismin vivo. We further investigate the tropism of DENV for the human central nervous system (CNS), characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA) and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa) from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa) and two less apparent proteins (100 and 130 kDa). Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1) that DENV-2 exhibited a direct tropism for human neurons and (2) that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

1988 ◽  
Vol 106 (4) ◽  
pp. 1273-1279 ◽  
Author(s):  
D D Mikol ◽  
K Stefansson

Here we report the isolation and initial biochemical characterization of a 120-kD peanut agglutinin-binding glycoprotein from the adult human central nervous system (CNS), which is anchored to membranes through a phosphatidylinositol linkage. Myelin incubated with phosphatidylinositol-specific phospholipase C released the protein as a soluble polypeptide of 105 kD, which was isolated with peanut agglutinin-agarose affinity chromatography. The protein was found to be highly glycosylated. The protein appears to be confined to the CNS, where its developmental expression is region specific and parallels myelination. It is in greater quantity in white matter than in gray matter and it is in isolated human CNS myelin. Furthermore, ovine oligodendrocytes in culture contain the protein on their surfaces and release it into the supernatant as a soluble 105-kD form. We call this protein the oligodendrocyte-myelin protein.


Author(s):  
Elizabeth Hampson

Organizational and activational effects of sex steroids were first discovered in laboratory animals, but these concepts extend to hormonal actions in the human central nervous system. This chapter begins with a brief overview of how sex steroids act in the brain and how the organizational-activational hypothesis originated in the field of endocrinology. It then reviews common methods used to study these effects in humans. Interestingly, certain cognitive functions appear to be subject to modification by sex steroids, and these endocrine influences may help explain the sex differences often seen in these functions. The chapter considers spatial cognition as a representative example because the spatial family of functions has received the most study by researchers interested in the biological roots of sex differences in cognition. The chapter reviews evidence that supports an influence of both androgens and estrogens on spatial functions, and concludes with a glimpse of where the field is headed.


2016 ◽  
Vol 49 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Danilo Bretas de Oliveira ◽  
Guilherme Machado ◽  
Gabriel Magno de Freitas Almeida ◽  
Paulo César Peregrino Ferreira ◽  
Cláudio Antônio Bonjardim ◽  
...  

1986 ◽  
Vol 11 (3) ◽  
pp. 205-214 ◽  
Author(s):  
Magnhild Sandberg-Wollheim ◽  
Burton Zweiman ◽  
Arnold I. Levinson ◽  
Robert P. Lisak

Author(s):  
Mehrak Mahmoudi ◽  
Piroz Zamankhan ◽  
William Polashenski

The nervous system remains one of the least understood biological structures due in large part to the enormous complexity of this organ. A theoretical model for the transfer of nerve impulses would be valuable for the analysis of various phenomena in the nervous system, which are difficult to study by experiments. The central nervous system is composed of more than 100 billion neurons, through which information is transmitted via nerve impulses. Nerve impulses are not immediately apparent since each impulse may be blocked during transmission, changed from a single impulse into repetitive impulse, or integrated with impulses from other neurons to form highly intricate patterns. In the human central nervous system, a neuron secretes a chemical substance called a neurotransmitter at the synapse, and this transmitter in turn acts on another neuron to cause excitation, inhibition, or some other modification of its sensitivity.


Sign in / Sign up

Export Citation Format

Share Document