scholarly journals Accurate DOA Estimations Using Microstrip Adaptive Arrays in the Presence of Mutual Coupling Effect

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Qiulin Huang ◽  
Hongxing Zhou ◽  
Jianhui Bao ◽  
Xiaowei Shi

A new mutual coupling calibration method is proposed for adaptive antenna arrays and is employed in the DOA estimations to calibrate the received signals. The new method is developed via the transformation between the embedded element patterns and the isolated element patterns. The new method is characterized by the wide adaptability of element structures such as dipole arrays and microstrip arrays. Additionally, the new method is suitable not only for the linear polarization but also for the circular polarization. It is shown that accurate calibration of the mutual coupling can be obtained for the incident signals in the 3 dB beam width and the wider angle range, and, consequently, accurate [1D] and [2D] DOA estimations can be obtained. Effectiveness of the new calibration method is verified by a linearly polarized microstrip ULA, a circularly polarized microstrip ULA, and a circularly polarized microstrip UCA.

2020 ◽  
Vol 68 (2) ◽  
pp. 824-837 ◽  
Author(s):  
Feng Yang ◽  
Shiwen Yang ◽  
Weijun Long ◽  
Yikai Chen ◽  
Fang Wang ◽  
...  

2015 ◽  
Vol 8 (8) ◽  
pp. 1253-1263 ◽  
Author(s):  
R. Hafezifard ◽  
Jalil Rashed-Mohassel ◽  
Mohammad Naser-Moghadasi ◽  
R. A. Sadeghzadeh

A circularly polarized (CP) and high gain Microstrip antenna is designed in this paper using metamaterial concepts. The antenna, built on a metamaterial substrate, showed significant size reduction and less mutual coupling in an array compared with similar arrays on conventional substrates. Demonstrated to have left-handed magnetic characteristics, the methodology uses complementary split-ring resonators (SRRs) placed horizontally between the patch and the ground plane. In order to reduce mutual coupling in the array structure, hexagonal-SRRs are embedded between antenna elements. The procedure is shown to have great impact on the antenna performance specifically its bandwidth which is broadened from 400 MHz to 1.2 GHz for X-band and as well as its efficiency. The structure has also low loss and improved standing wave ratio and less mutual coupling. The results show that a reduction of 26.6 dB in mutual coupling is obtained between elements at the operation frequency of the array. Experimental data show a reasonably good agreement between simulation and measured results.


Sign in / Sign up

Export Citation Format

Share Document