scholarly journals Portfolio Selection Based on Distance between Fuzzy Variables

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Weiyi Qian ◽  
Mingqiang Yin

This paper researches portfolio selection problem in fuzzy environment. We introduce a new simple method in which the distance between fuzzy variables is used to measure the divergence of fuzzy investment return from a prior one. Firstly, two new mathematical models are proposed by expressing divergence as distance, investment return as expected value, and risk as variance and semivariance, respectively. Secondly, the crisp forms of the new models are also provided for different types of fuzzy variables. Finally, several numerical examples are given to illustrate the effectiveness of the proposed approach.

2012 ◽  
Vol 7 (8) ◽  
pp. 1765-1791 ◽  
Author(s):  
Pankaj Gupta ◽  
Garima Mittal ◽  
Mukesh Kumar Mehlawat

2020 ◽  
Vol 16 (02) ◽  
pp. 271-290
Author(s):  
Justin Dzuche ◽  
Christian Deffo Tassak ◽  
Jules Sadefo Kamdem ◽  
Louis Aimé Fono

Possibility, necessity and credibility measures are used in the literature in order to deal with imprecision. Recently, Yang and Iwamura [L. Yang and K. Iwamura, Applied Mathematical Science 2(46) (2008) 2271–2288] introduced a new measure as convex linear combination of possibility and necessity measures and they determined some of its axioms. In this paper, we introduce characteristics (parameters) of a fuzzy variable based on that measure, namely, expected value, variance, semi-variance, skewness, kurtosis and semi-kurtosis. We determine some properties of these characteristics and we compute them for trapezoidal and triangular fuzzy variables. We display their application for the determination of optimal portfolios when assets returns are described by triangular or trapezoidal fuzzy variables.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 442 ◽  
Author(s):  
Yige Xue ◽  
Yong Deng

Refined expected value decision rules can refine the calculation of the expected value and make decisions by estimating the expected values of different alternatives, which use many theories, such as Choquet integral, PM function, measure and so on. However, the refined expected value decision rules have not been applied to the orthopair fuzzy environment yet. To address this issue, in this paper we propose the refined expected value decision rules under the orthopair fuzzy environment, which can apply the refined expected value decision rules on the issues of decision making that is described in the orthopair fuzzy environment. Numerical examples were applied to verify the availability and flexibility of the new refined expected value decision rules model. The experimental results demonstrate that the proposed model can apply refined expected value decision rules in the orthopair fuzzy environment and solve the decision making issues with the orthopair fuzzy environment successfully.


Author(s):  
WEIJUN XU ◽  
WEIDONG XU ◽  
HONGYI LI ◽  
WEIGUO ZHANG

Owing to the fluctuations in the financial markets, many financial variables such as expected return, volatility, or exchange rate may occur imprecisely. But many portfolio selection models consider precise input of these values. Therefore, this paper studies a multiobjective international asset allocation problem under fuzzy environment. In our portfolio selection model, both of the return risk and the exchange risk are considered. The coefficient matrices in the objectives and constraints and the decision value are considered as fuzzy variables. The calculation of the portfolio and efficient frontier is derived by considering the exchange risk in the fuzzy environment. An empirical study is performed based on a portfolio of six securities denominated in six different currencies, i.e., USD, EUR, JPY, CNY, HKD, and GBP. The α-level closed interval portfolio [Formula: see text] and the fuzzy efficient frontier are obtained with different values of α ∈ (0, 1]. The empirical results indicate that the fuzzy asset selection method is a useful tool for dealing with the imprecise problem in the real world.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Ying Liu ◽  
Xiaozhong Li ◽  
Jianbin Li

The lifetimes of components in unrepairable systems are considered as random fuzzy variables since randomness and fuzziness are often merged with each other. Then we establish the fundamental mathematical models of random fuzzy unrepairable systems, including series systems, parallel systems, series-parallel systems, parallel-series systems, and cold standby systems with absolutely reliable conversion switches. Furthermore, the expressions of reliability and mean time to failure (MTTF) are given for the above five random fuzzy unrepairable systems, respectively. Finally, numerical examples are given to show the application in a lighting lamp system and a hi-fi system.


2006 ◽  
Vol 33 (8) ◽  
pp. 1065-1074 ◽  
Author(s):  
Tarek M Zayed ◽  
Ibrahim A Nosair

Assessing productivity, cost, and delays are essential to manage any construction operation, particularly the concrete batch plant (CBP) operation. This paper focuses on assessing the above-mentioned items for the CBP using stochastic mathematical models. It aims at (i) identifying the potential sources of delay in the CBP operation; (ii) assessing their influence on production, efficiency, time, and cost; and (iii) determining each factor share in inflating the CBP concrete unit expense. Stochastic mathematical models were designed to accomplish the aforementioned objectives. Data were collected from five CBP sites in Indiana, USA, to implement and verify the designed models. Results show that delays due to management conditions have the highest probability of occurrence (0.43), expected value of delay percent (62.54% out of total delays), and relative delay percent. The expected value of efficiency for all plants is 86.53%; however, the average total expense is US$15.56/m3 (all currency are in US$). In addition, the expected value of effective expenses (EE) is $18.03/m3, resulting in extra expenses (XE) of $2.47/m3. This research is relevant to both industry practitioners and researchers. It develops models to determine the effect of delays on concrete unit cost. They are also beneficial to the CBP management.Key words: concrete batch plant, delays, management conditions, cost models, cost management, stochastic mathematical models.


Author(s):  
Sandip Moi ◽  
Suvankar Biswas ◽  
Smita Pal(Sarkar)

AbstractIn this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have been used to develop the neutrosophic differential calculus. By considering different types of first- and second-order derivatives, different kind of systems of derivatives have been developed. This is the first time where a second-order neutrosophic boundary-value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have been examined to explain different systems of neutrosophic differential equation.


2021 ◽  
pp. 1-21
Author(s):  
Muhammad Shabir ◽  
Rimsha Mushtaq ◽  
Munazza Naz

In this paper, we focus on two main objectives. Firstly, we define some binary and unary operations on N-soft sets and study their algebraic properties. In unary operations, three different types of complements are studied. We prove De Morgan’s laws concerning top complements and for bottom complements for N-soft sets where N is fixed and provide a counterexample to show that De Morgan’s laws do not hold if we take different N. Then, we study different collections of N-soft sets which become idempotent commutative monoids and consequently show, that, these monoids give rise to hemirings of N-soft sets. Some of these hemirings are turned out as lattices. Finally, we show that the collection of all N-soft sets with full parameter set E and collection of all N-soft sets with parameter subset A are Stone Algebras. The second objective is to integrate the well-known technique of TOPSIS and N-soft set-based mathematical models from the real world. We discuss a hybrid model of multi-criteria decision-making combining the TOPSIS and N-soft sets and present an algorithm with implementation on the selection of the best model of laptop.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Huan Zhang ◽  
Yang Liu ◽  
Jingsi Huang

Supply chain coordination models are developed in a two-echelon supply chain with double sided disruptions. In a supply chain system, the supplier may suffer from the product cost disruption and the retailer suffers from the demand disruption simultaneously. The purpose of this study is to design proper supply chain contracts, under which the supply chain with double sided disruption can be coordinated. Firstly, the centralized decision-making models are applied to find the optimal price and quantity under three cases as the baseline. The different cases are divided by the different relationship between the product cost disruption and the demand disruption. Secondly, two different types of contracts are introduced to coordinate the whole supply chain. One is all-unit wholesale quantity discount policy (AQDP) contract, and the other one is capacitated linear pricing policy (CLPP) contract. And it is found out that the gap between the demand disruption and the product cost disruption is the key factor to influence the supply chain coordination. Some numerical examples and sensitivity analysis are given to illustrate the models. The AQDP contracts are listed out under different cases to show how to use it under double sided disruptions.


2011 ◽  
Vol 11 (02) ◽  
pp. 215-236 ◽  
Author(s):  
MATTEO BROGGI ◽  
ADRIANO CALVI ◽  
GERHART I. SCHUËLLER

Cylindrical shells under axial compression are susceptible to buckling and hence require the development of enhanced underlying mathematical models in order to accurately predict the buckling load. Imperfections of the geometry of the cylinders may cause a drastic decrease of the buckling load and give rise to the need of advanced techniques in order to consider these imperfections in a buckling analysis. A deterministic buckling analysis is based on the use of the so-called knockdown factors, which specifies the reduction of the buckling load of the perfect shell in order to account for the inherent uncertainties in the geometry. In this paper, it is shown that these knockdown factors are overly conservative and that the fields of probability and statistics provide a mathematical vehicle for realistically modeling the imperfections. Furthermore, the influence of different types of imperfection on the buckling load are examined and validated with experimental results.


Sign in / Sign up

Export Citation Format

Share Document