scholarly journals Dynamic of Plant Composition and Regeneration following Windthrow in a Temperate Beech Forest

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sakineh Mollaei Darabi ◽  
Yahya Kooch ◽  
Seyed Mohsen Hosseini

The effects of soil pedoturbation (i.e., pit and mound microtopography, PM) on development of herbaceous plant species and woody species regeneration were examined in a temperate beech forest (Fagus orientalis Lipsky) in northern Iran. We recorded the vegetation in 20 pairs of disturbed and adjacent undisturbed plots and established a chronosequence of PM ages to study the effect of time since microsite formation on cover percent of herbaceous plants and woody regeneration status. According to our findings, Carex acutiformis L., Sambucus ebulus L., Brachypodium pinnatum L., and Cyclamen coum L. are found only in the PM microsites, whereas the Equisetum ramosissimum L. is recorded only under closed canopy. The coverage percent of Rubus caesius L. increased in PM microsites compared to closed canopy intensively. In addition, Albizia julibrissin Durazz. is detected in PM microsite, whereas the Acer cappadocicum B. and Prunus persica L. species were recorded only under closed canopy. We found significant differences in understory species diversity between different ages of PM, and disturbed and adjacent undisturbed plots. Our study supports that the PM complex will create a mosaic of environmental conditions. This environmental heterogeneity could be responsible for the diversity of herbaceous plant species and regeneration of woody species.

Author(s):  
Samson Shimelse Jemaneh

This study was conducted with the objectives of study investigates, compare, and try to describe the floristic composition and structure of the vegetation of exclosures and open grazing lands. A stratified preferential sampling design technique with flexible systematic model was used for data collection. Data on vegetation and environmental parameters were gathered from 120 quadrants (90 from restorations or exclosures of different ages and 30 from adjacent open grazing lands), of 20 m x 20 m (400 m2) size. Species richness and the presence or absence of herbaceous plants were recorded like soil samples in a 2 m x 2 m (4 m2) subplot inside each main quadrant from five points, one at each corner and one at the center.  A total of 142 plant species belonging to 118 genera and 52 families were identified. All exclosures displayed higher plant species richness, diversity, and aboveground standing biomass compared to the adjacent open grazing lands. Consideration of edaphic (e.g. soil total nitrogen, available phosphorus, CEC, exchangeable bases, soil pH and soil texture) and site (e.g. Stoniness, Grazing) variables will help to optimize the selection of areas for the establishment of future exclosures. Moreover, our study suggests that with time exclosures may increasingly obtain an important role as refugees and species pool similar to church forests and should be protected and managed in a sustainable manner. However, economic and social impacts of exclosures should be included in feasibility studies before establishing exclosures in the future.  Altitude, Grazing and some soil parameters like Mg were the major environmental factors in the division of the vegetation into plant community types. The result of the frequency distribution of woody species showed a high proportion of small-sized individuals in the lower diameter classes indicating good recruitment potential of the forest patches and the rare occurrence of large individuals. Such trend was probably caused by past disturbance of the original vegetation resulting in a succession of secondary vegetation. In addition, the analysis of species population structure indicated that some tree species had abnormal population structure with no or few individuals at lower size classes. Moreover, assessment of regeneration status on the basis of age classes indicated that significant proportion of woody species were represented by few or no seedlings, entailing that they were under threat. Substantial numbers of forest species were found to have irregular population structure and are in reduced regeneration status. To prevent local extinction of these species, present efforts of nursery establishment and plantation of indigenous species in the exclosures should be strengthened and extended.


2018 ◽  
Vol 19 (5) ◽  
pp. 1835-1841
Author(s):  
GHADER POURRAHMATI ◽  
ASADOLLAH MATAJI ◽  
HASSAN POURBABAEI ◽  
ALI SALEHI

Pourrahmati G, Mataji A, Pourbabaei H, Salehi A. 2018. Short Communication: Floristic composition and relationships between plant species abundance and soil properties in common hazel (Corylus avellana) mountainous forest of northern Iran. Biodiversitas 19: 1835-1841. Mountainous forests are valuable terrestrial ecosystems because of their useful services for the human being. Here, we explored the floristic composition and the relationships between plant species abundance distribution and soil physical and chemical properties in common hazel (Corylus avellana L.) in the mountainous forest of northern Iran. Within the forest stand, 30 quadrats (20 m × 20 m and 1 m × 1 m for woody and herbaceous species, respectively) were selectively sampled along an altitudinal range from 1300 m to 1800 m a.s.l. to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The results showed that a total of 43 herbaceous and 15 woody species belonging to 23 and 8 families were identified. The abundance of herbaceous species was significantly correlated with soil properties (pH and total N). Furthermore, the abundance of woody species had a non-significant correlation with soil properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Abyot Dibaba ◽  
Teshome Soromessa ◽  
Alemayehu Kefalew ◽  
Admassu Addi

This study was conducted in Agama Forest in Kafa Zone, Southwestern Ethiopia, to assess species diversity, vegetation structure, and regeneration status of woody species. A systematic sampling technique was employed to collect vegetation data. Sixty (60) sample plots of 25 m × 25 m were laid at 300 m intervals all along ten grids interspaced 800 m apart. Sample plots of 25 m × 25 m were used to record DBH and H of all woody plant species reaching a DBH >2.5 cm and height >2 m. For the inventory of seedling and sapling, two subplots of 2 m × 5 m were used at the beginning and the end of the baseline on opposite sides of the main quadrat. Vegetation data such as DBH, height, seedling, and sapling density of woody species were recorded in each plot. Altogether, 72 woody plant species of 65 genera and 35 families were identified. Analysis of selected tree species showed diverse population structures. This study showed that small trees and shrubs dominated the Agama Forest, which revealed its status under a secondary regeneration stage. Study on the structure and regeneration of some woody species indicated that there are species that require urgent conservation measures. Sound management and monitoring, as well as maintenance of biodiversity and cultural and economic values of the forest, require conservation activities that encourage sustainable uses of the forest and its products.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ergua Atinafe ◽  
Ephrem Assefa ◽  
Birhanu Belay ◽  
Yemenzwork Endale ◽  
Talemos Seta

The study was carried out at Entoto Mountain and its surrounding area, about 10 km north of the center of Addis Ababa. The purpose of this study was to assess the floristic composition and regeneration status of woody species and recommend further conservation methods. Ten transect lines were laid from south-north at 1 km interval. Along these transect lines, 62 sample plots of 400 m2 (20 m × 20 m) were laid at 1 km interval. A total of 179 plant species belonging to 107 genera and 60 families were recorded. Asteraceae (30 species) was the most dominant family. Of 179 plant species, 73 were naturally regenerated woody species representing 48 genera and 34 families. Herbs account for the largest growth form (91, 50.84%), indicating the fact that disturbance favors herb species. For the analysis of vegetation diversity, woody species composition, and density, the study area was classified into five land-use types. Of the five land-use types, degraded land-use type had low species diversity and evenness (1.48 and 0.295), and it had a low density of economically and ecologically important larger trees. However, the density of seedlings and saplings showed the normal regeneration status for the herbs and shrubs. Therefore, responsible stakeholders should give high priority for the conservation of ecologically and economically important large trees using appropriate conservation methods in the study area.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Semegnew Tadese ◽  
Teshome Soromessa ◽  
Tesefaye Bekele ◽  
Getaneh Gebeyehu

The aim of this study was to analyse the species composition, structures, and regeneration of woody plant species and the impacts of site factors on the natural regeneration of tree species in four study sites of MFBR. The vegetation data were collected systematically in 140 plots with the size of 400 m2 for trees; 25 m2 for seedlings, saplings, shrubs, and lianas; and 1 m2 for herbs. Individual tree and shrub DBH ≥ 5 cm were measured and counted. The diameter at breast height (DBH), frequency, basal area, importance value index (IVI), and density were used for vegetation structure description and regeneration. A total of 158 plant species belonging to 115 genera, 56 families, and 80 species (51%) trees, 26 (16%) shrubs, 19 (12%) herbs, and 33 (21%) lianas were identified and recorded. The most dominant families were Euphorbiaceae, Rubiaceae, and Moraceae, each represented by 13 species (7.4%), 12 species (6.8%), and 10 species (5.7%), respectively. The tree densities varied from 1232 to 1478 stem ha−1, sapling density 176.8 to 708.7 stem ha−1, and seedling density 534.7 to 1657.5 stem ha−1, with an average basal area of 63.6 m2 in the study sites. Dracaena afromontana was the most frequent woody species in the MFBR occurring in 90% followed by Celtis zenkeri (65%) and Pouteria altissima (62.5%). The regeneration status of all the woody plant species was categorised as “not regenerate” (9.6%), “poor” (30.7%), “fair” (59.5%), and “good” (10.8%) in all sites. The correlation result between natural regeneration and site factors revealed both positive and negative relationships. However, the main threat to the biosphere reserve is illegal logging for different purposes. Therefore, awareness creation on sustainable forest management, utilisation, conservation of priority species, and livelihood diversification to the local community and encouraging community and private woodlot plantation in the transitional zone of biosphere reserves are recommended.


2021 ◽  
Author(s):  
Birgit Nordt ◽  
Isabell Hensen ◽  
Solveig Franziska Bucher ◽  
Martin Freiberg ◽  
Richard B. Primack ◽  
...  

2021 ◽  
Vol 232 (7) ◽  
Author(s):  
N. Matanzas ◽  
E. Afif ◽  
T. E. Díaz ◽  
J. R. Gallego

AbstractPhytomanagement techniques using native species allow the recovery of contaminated soils at low cost and circumvent the ecological risks associated with the use of non-native species. In this context, a paradigmatic brownfield megasite highly contaminated by As and Pb was sampled in order to analyze soil–plant interactions and identify plant species with phytoremediation potential. A survey was first carried out in a 20-ha area to obtain an inventory of species growing spontaneously throughout the site. We then performed another survey in the most polluted sub-area (1 ha) within the site. Pseudototal concentrations of contaminants in the soil, aerial parts of the plants, and roots were measured by ICP-MS. A detailed habitat classification was done, and a specific index of coverage was applied by means of a 1-year quadrat study in various sampling stations. Results converged in the selection of six herbaceous species (Dysphania botrys, Lotus corniculatus, Lotus hispidus, Plantago lanceolata, Trifolium repens, Medicago lupulina). All of these plants are fast-growing, thereby making them suitable for use in phytostabilization strategies. Furthermore, they are all easy to grow and propagate and are generally self-sustaining. All six plants showed accumulation factors below 1, thus revealing them as pseudomethallophytes and excluders. However, L. hispidus and M. lupulina showed translocation capacity and are considered worthy of further study.


Sign in / Sign up

Export Citation Format

Share Document