scholarly journals Examination of a Theoretical Model of Streaming Potential Coupling Coefficient

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
D. T. Luong ◽  
R. Sprik

Seismoelectric effects and streaming potentials play an important role in geophysical applications. The key parameter for those phenomena is the streaming potential coupling coefficient, which is, for example, dependent on the zeta potential of the interface of the porous rocks. Comparison of an existing theoretical model to experimental data sets from available published data for streaming potentials has been performed. However, the existing experimental data sets are based on samples with dissimilar fluid conductivity, pH of pore fluid, temperature, and sample compositions. All those dissimilarities may cause the observed deviations. To critically assess the models, we have carried out streaming potential measurement as a function of electrolyte concentration and temperature for a set of well-defined consolidated samples. The results show that the existing theoretical model is not in good agreement with the experimental observations when varying the electrolyte concentration, especially at low electrolyte concentration. However, if we use a modified model in which the zeta potential is considered to be constant over the electrolyte concentration, the model fits the experimental data well in a whole range of concentration. Also, for temperature dependence, the comparison shows that the theoretical model is not fully adequate to describe the experimental data but does describe correctly the increasing trend of the coupling coefficient as function of temperature.

TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


2012 ◽  
Vol 516-517 ◽  
pp. 1870-1873 ◽  
Author(s):  
Jun Wang ◽  
Heng Shan Hu

The electrokinetic effects are important in the understanding of electric properties in porous medium. In this study, the streaming potential and streaming current of saturated samples are measured at different concentrations, then three methods are applied to obtain the zeta-potential and electrokinetic coupling coefficient. The study shows that the results obtained from streaming potential and streaming current methods agree well with each other, but the results obtained from simplified streaming potential method become seriously inaccurate at low concentrations due to the influence of surface conductance. This experimental study also provides a reliable estimate of the surface conductivity and its contribution to zeta-potential at given concentrations.


2007 ◽  
pp. 222-252
Author(s):  
C. Notarnicola

This chapter introduces the use of Bayesian methodology for inversion purposes: the extraction of bio-geophysical parameters from remotely sensed data. Multisources information, such as different polarizations, frequencies, and sensors are fundamental to the development of operationally useful inversion systems. In this context, Bayesian methodologies offer a convenient tool of combining two or more disparate sources of information, models, and data. The chapter describes the development of a general model starting from a theoretical model, including the sensor noise and the model errors, by using a Bayesian approach. Furthermore, the developed procedure is applied to some experimental data sets. The author hopes that considering theoretical models and experimental data in many different configurations can give an idea of the versatility and robustness of the Bayesian framework.


1963 ◽  
Vol 18 (6) ◽  
pp. 1263-1264 ◽  
Author(s):  
R. E. Beck ◽  
V. Mirkovitch ◽  
P. G. Andrus ◽  
R. I. Leininger

A system was developed to measure the streaming potential generated between the ends of a capillary by the flow of a fluid through the capillary. Zeta potential can be calculated from the streaming potential. Adequate sensitivity and reproducibility were achieved by making special electrodes: silver wires plated in KCl solution and embedded in agar, careful electrical shielding, and provision for reversal of flow through the capillary to minimize electrode errors. The apparatus was developed to measure streaming potentials generated by either RingerS's solution or blood in contact with capillaries made of different materials such as quartz, polyethylene, etc. An example of a determination using a quartz capillary is presented. interfaces; blood; salt solutions; glass; quartz Submitted on February 25, 1963


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Zhang ◽  
Mingjie Zhao ◽  
Kui Wang

The streaming potential effect in soil-rock mixture (SRM) is related to the compactness and rock content, but there is no model to quantitatively describe this behavior. In this paper, the Kozeny–Carman (KC) equation is modified by using the compactness and rock content. Then, the modified KC equation is substituted into the equation of streaming potential coupling coefficient. A new modified model of streaming potential coupling coefficient that depends on the compactness, rock content, particle shape, and particle gradation is proposed. The reliability of the new modified model is tested by experiments, and the applicable scope of the model is obtained. The results show that when the rock content is 30%, the permeability coefficient prediction accuracy of the modified KC equation is higher in the range of 85–95% compactness. The new modified model of the streaming potential coupling coefficient represents well the control of the compactness (75–95%) on the coupling coefficient. When the compactness remains 85%, the permeability coefficient calculated by the modified KC equation in the range of 10–70% rock content is consistent with the experimental data. The influence of the rock content (10–90%) on the coupling coefficient is well described by the new modified model of the streaming potential coupling coefficient. The new modified model of streaming potential coupling coefficient is helpful to quantitatively evaluate the internal structure evolution of embankment dam by using streaming potential phenomenon.


2012 ◽  
Author(s):  
Mohd Zaidi Jaafar ◽  
Ali Pourbasirat

Telaga pintar merujuk kepada telaga yang mengandungi downhole sensors dan injap kawalan aliran masuk (ICV) yang dipasang pada tiub pengeluaran. Telaga ini membenarkan pengendali untuk merekodkan kadar aliran bendalir, suhu dan tekanan yang berterusan semasa pengeluaran. Baru–baru ini, pengukuran streaming potential dalam telaga pintar telah dicadangkan untuk memantau pencerobohan air. Walau bagaimanapun, masih terdapat ketidakpastian yang signifikan yang dikaitkan dengan tafsiran ukuran, terutamanya mengenai pekali gandingan streaming potential. Ini adalah ciri petrofizik utama yang menentukan magnitud streaming potential untuk potensi bendalir yang tertentu. Magnitud streaming potential pada asasnya berkait dengan kadar aliran bendalir, sifat–sifat bendalir (khususnya kemasinan), dan sifat–sifat matriks batuan. Pekali gandingan telah diukur secara uji kaji dalam teras batu pasir yang tepu dengan kemasinan air garam yang berbeza, tetapi sangat sedikit hasil ujikaji telah diterbitkan bagi batuan karbonat. Bilangan reservor karbonat yang besar di seluruh dunia menyarankan bahawa pengukuran streaming potential dalam batuan karbonat juga penting. Dalam kajian ini, kami kemukakan nilai pekali gandingan streaming potential bagi batu karbonat yang tepu dengan berbagai kemasinan air garam. Seperti yang kami jangkakan, streaming potential bagi teras itu adalah kecil tetapi masih boleh diukur, dan kemasinan yang lebih tinggi memberikan pekali gandingan streaming potential yang lebih kecil. Keputusan yang diperolehi adalah konsisten hasil penggunaan elektrod yang direka khas dan ujikaji pam berpasangan untuk menghapuskan potensi elektrik palsu. Kami mendapati bahawa pekali gandingan streaming potential di dalam batu karbonat adalah lebih rendah berbanding dengan yang ada di teras batu pasir yang ditepukan dengan kemasinan air garam yang sama. Pemerhatian ini boleh dijelaskan dengan membandingkan perbezaan titik caj sifar (pzc) di antara kedua–dua jenis batu. Secara kualitatif, hasil ujikaji menunjukkan bahawa pengukuran streaming potential boleh digunakan untuk memantau pencerobohan air di dalam reservor karbonat, sama seperti ia digunakan untuk reservor batu pasir. Kata kunci: Streaming potential; elektrokinetik; pemantauan bawah telaga; telaga pintar; water encroachment; kawalan pengeluaran air; batu karbonat Smart wells refer to wells containing downhole sensors and inflow control valves (ICV) mounted on the production tubing. These wells allow the operator to record fluid flow rates, temperature and pressure incessantly. Recently, streaming potential measurement in smart wells has been proposed to monitor water encroachment. However, there are still significant uncertainties associated with the interpretation of the measurements, particularly concerning the streaming potential coupling coefficient. This is a key petrophysical property that dictates the magnitude of the streaming potential for a given fluid potential. Streaming potential magnitude is basically related to the fluid flow rate, fluid properties (particularly salinity), and the rock matrix properties. The coupling coefficient has been measured experimentally in sandstone cores saturated with different brine salinities, but very little works have been published on carbonate rocks. The huge number of carbonate reservoirs around the world suggests that measurement of streaming potential in carbonate rocks is also important. In this study, we present value of streaming potential coupling coefficient in a carbonate rock saturated with various salinities of brine. As we expected, streaming potential in such core is small but measurable and higher salinity gives smaller streaming potential coupling coefficient. Consistent results are obtained using specially designed electrodes and paired pumping experiments to eliminate spurious electrical potentials. We noticed that streaming potential coupling coefficient in carbonate rock is lower compared to the one in sandstone cores saturated with the same salinity of brine. This observation could be explained by comparing the difference in Point of zero charges (pzc) between those two types of rock. Qualitatively, the result suggests that measurements of streaming potential could be applied for monitoring water encroachment in carbonate reservoirs, in the same manner it is applied for sandstones reservoirs. Key words: Streaming potential; electrokinetics; downhole monitoring; intelligent wells; water encroachment; produced water control; carbonate rocks


Author(s):  
Luong Duy Thanh

The measurements of the zeta potential of five consolidated samples including natural and artificial ceramic rocks saturated with 5.0×10-3 M NaCl electrolyte at different temperatures have been reported. The zeta potential obtained in this work is always negative and increases in magnitude with increasing temperature for all samples (an average increase of the zeta potential of 0.4 mV/ oC in magnitude). The experimental results are in good agreement with previously published data. The experimental data is then explained by a theoretical model. It is shown that the model is able to reproduce the main trend of the experimental data from our work and from published articles.


2018 ◽  
Vol 35 (4) ◽  
pp. 537-547 ◽  
Author(s):  
A. Sailaja ◽  
B. Srinivas ◽  
I. Sreedhar

ABSTRACTThis work analyzes the pressure driven flow of a power law fluid in a slit microchannel of asymmetric walls with electroviscous effects. The steady state Cauchy momentum and the Poisson-Boltzmann equation are solved for the velocity and the potential distribution inside the microchannel. The Debye-Huckel approximation as applicable for low zeta potentials is not made in the present work. The unknown streaming potential is solved by casting the governing equations as an optimization problem using COMSOL Multiphysics. This proposed method is very robust and can be used for a wide variety of cases. It is found that the asymmetry of the zeta potential at the two walls plays an important role on the streaming potential developed. There is a unique zeta potential ratio at which the streaming potential exhibits a maxima for both Debye-Huckel parameter and the power law index. Shear thinning fluids exhibit a stronger dependency of the streaming potential on asymmetry of the zeta potential than shear thickening fluids. For Newtonian fluids narrow slit microchannels develop larger streaming potentials compared to wider microchannels for a given asymmetry.


2003 ◽  
Author(s):  
G. J. Carbajal ◽  
J. E. Gonza´lez ◽  
R. Diaz

This paper presents the development of a theoretical model and simulation analysis for the discharging process that takes place in a porous medium initially saturated with ink. During the discharging process the porous material provides enough surface area to hold the fluid by capillarity effects. It was found by the numerical solution that the velocity profile through the porous region was uniform and the backpressure had a linear behavior as function of time. A parametric study also revealed that the permeability, void volume and surface tension have a significant effect on the pressure drop. The numerical formulation was validated with experimental data and good agreements were found between both data sets.


Sign in / Sign up

Export Citation Format

Share Document