scholarly journals Active Sliding Mode for Synchronization of a Wide Class of Four-Dimensional Fractional-Order Chaotic Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.

2010 ◽  
Vol 171-172 ◽  
pp. 723-727
Author(s):  
Hong Zhang ◽  
Qiu Mei Pu

For the synchronization of fractional-order chaotic systems with uncertain parameters, a controller based on sliding mode theory is presented. Based on the stability theory of fractional-order system, stability of the proposed method is analyzed. The theory is successfully applied to synchronize fractional Newton-Leipnik chaotic systems with uncertain parameters. The simulation results show the effectiveness of the proposed controller.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Author(s):  
Samir Ladaci ◽  
Karima Rabah ◽  
Mohamed Lashab

This chapter investigates a new control design methodology for the synchronization of fractional-order Arneodo chaotic systems using a fractional-order sliding mode control configuration. This class of nonlinear fractional-order systems shows a chaotic behavior for a set of model parameters. The stability analysis of the proposed fractional-order sliding mode control law is performed by means of the Lyapunov stability theory. Simulation examples on fractional-order Arneodo chaotic systems synchronization are provided in presence of disturbances and noises. These results illustrate the effectiveness and robustness of this control design approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yong Xu ◽  
Hua Wang

Chaotic systems are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems with Gaussian fluctuation. A fractional integral (FI) sliding surface is proposed for synchronizing the uncertain fractional-order system, and then the sliding mode control technique is carried out to realize the synchronization of the given systems. One theorem about sliding mode controller is presented to prove that the proposed controller can make the system achieve synchronization. As a case study, the presented method is applied to the fractional-order Chen-Lü system, and simulation results show that the proposed control approach is capable to go against Gaussian noise well.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 599 ◽  
Author(s):  
Chao Song ◽  
Shumin Fei ◽  
Jinde Cao ◽  
Chuangxia Huang

This paper mainly focuses on the robust synchronization issue for drive-response fractional-order chaotic systems (FOCS) when they have unknown parameters and external disturbances. In order to achieve the goal, the sliding mode control scheme only using output information is designed, and at the same time, the structures of a sliding mode surface and a sliding mode controller are also constructed. A sufficient criterion is presented to ensure the robust synchronization of FOCS according to the stability theory of the fractional calculus and sliding mode control technique. In addition, the result can be applied to identical or non-identical chaotic systems with fractional-order. In the end, we build two practical examples to illustrate the feasibility of our theoretical results.


2012 ◽  
Vol 424-425 ◽  
pp. 318-323
Author(s):  
Hong Zhang ◽  
Dao Yin Qiu

This work investigates chaos synchronization between two different fractional-order hyperchaotic system (FOHS)s with uncertain parameters. The Chen FOHS is controlled to be synchronized with a new FOHS. The analytical conditions for the synchronization of different FOHSs are derived by utilizing the stability theory of fractional-order system. Furthermore, synchronization between two different FOHSs is achieved by utilizing sliding mode control method in a quite short period and both remain in chaotic states. Numerical simulations are used to verify the theoretical analysis using different values of the fractional-order parameter


2014 ◽  
Vol 926-930 ◽  
pp. 3046-3049
Author(s):  
Jin Ping Jia ◽  
Fan Di Zhang

This paper investigated hybrid projective synchronization of fractional order hyperchaotic systems with different orders. Based on the idea of active control and the stability theory of linear fractional-order system, we design the effective controller to realize the hybrid projective synchronization. Numerical simulation results which are carried show that the method is easy to implement and reliable for synchronizing the two nonlinear fractional order hyperchaotic systems while it also allows both the systems to remain in hyperchaotic states.


2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


Sign in / Sign up

Export Citation Format

Share Document