scholarly journals Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tian Tian ◽  
Basharat Ali ◽  
Yebo Qin ◽  
Zaffar Malik ◽  
Rafaqat A. Gill ◽  
...  

Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napusL.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of theB. napusplants.

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 908
Author(s):  
Faisal Zulfiqar ◽  
Jianjun Chen ◽  
Patrick M. Finnegan ◽  
Muhammad Nafees ◽  
Adnan Younis ◽  
...  

Alpinia zerumbet is an important medicinal and ornamental plant species. Drought stress is a major concern for sustainable horticulture crop production under changing climate scenarios. Trehalose (Tre) and 5-aminolevulinic acid (ALA) are osmoprotectants that play important roles in mitigating plant stresses. In this study, the effects of foliar application of 25 mM Tre or 10 mg L−1 ALA on biochemical and physiological parameters of A. zerumbet seedlings and their growth were evaluated under well-watered and drought-stressed (65% of field capacity) conditions. Drought caused reductions in physiological parameters and plant growth. These decreases were accompanied by increases in leaf free proline and glycine betaine concentrations and peroxidase activities. Foliar application of Tre or ALA remediated physiological and biochemical parameters and plant growth. Overall, foliar application of ALA or Tre proved to be beneficial for mitigating drought stress in A. zerumbet.


2011 ◽  
Vol 39 (1) ◽  
pp. 41 ◽  
Author(s):  
Feng XU ◽  
Shuiyuan CHENG ◽  
Jun ZHU ◽  
Weiwei ZHANG ◽  
Yan WANG

The flavonoid content determines the quality of Ginkgo biloba that can be increased by using of plant growth regulators. The objective of study was to observe the effect of 5-aminolevulinic acid (ALA), a key precursor in the biosynthesis of porphyrins and a new plant growth regulator, on photosynthetic rate, chlorophyll and soluble sugar content, flavonoid accumulation, and flavonoid enzyme activity in G. biloba leaves. The ginkgo seedlings were grown in greenhouse conditions under low levels (10 and 100 mg l-1) of foliar application of ALA. Photosynthetic rates of leaves increased significantly at day 4 in response to both ALA concentrations and remained elevated as compared to control for further 12 days. Chlorophyll and soluble sugar contents were significantly increased by day 4 and continued to increase by day 16; however, Chl a/b ratio remained unchanged. Total polyphenols, flavonoids, and anthocyanins, phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and chalcone isomerase (CHI) activities were increased from day 4 to 16 after ALA treatment. The increase in chlorophyll and soluble sugar contents, and activities of flavonoid enzymes (PAL, CHS and CHI) were likely to be closely associated with improvement of the accumulation of total polyphenols, flavonoids, anthocyanins and advance of leaf quality by ALA treatment. Foliar treatment with a low concentration of ALA therefore, might provide a useful means of improving pharmacological properties of G. biloba leaves.


2017 ◽  
Vol 68 (5) ◽  
pp. 474 ◽  
Author(s):  
Ji-Xuan Song ◽  
Shakeel Ahmad Anjum ◽  
Xue-Feng Zong ◽  
Rong Yan ◽  
Ling Wang ◽  
...  

Water deficit is an environmental constraint restricting plant growth and productivity, and is further worsened by reduced soil fertility. Plant growth-regulating substances ameliorate damaging effects of abiotic stresses, and their efficacy is improved by application of adequate nutrients. An experiment was undertaken to investigate the influence of foliar-applied nutrients (nitrogen, phosphorus, potassium: NPK) and 5-aminolevulinic acid (ALA) alone and in combination on morpho-physiological indices of the perennial grass Leymus chinensis (Trin.) Tzvel under drought and well-watered conditions. Drought stress caused a reduction in growth and photosynthetic pigments while increasing the accumulation of malondialdehyde (MDA) and osmolytes compared with well-watered conditions. However, application of NPK and ALA improved plant height, fresh and dry weights, and chlorophyll content. Production of soluble proteins and sugars, proline content, and antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and glutathione reductase) were increased and MDA accumulation was lowered by application of NPK and ALA relative to the control (no application). Combined application of NPK and ALA proved more advantageous than NPK or ALA alone in exerting ameliorative effect on L. chinensis under drought-stressed conditions. The results suggest that combined application of NPK and ALA improves the growth and development of L. chinensis by modulating physiological processes and aids in sustaining drought.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 525 ◽  
Author(s):  
Zahid Imran Mallhi ◽  
Muhammad Rizwan ◽  
Asim Mansha ◽  
Qasim Ali ◽  
Sadia Asim ◽  
...  

Lead (Pb) toxicity has a great impact in terms of toxicity towards living organisms as it severely affects crop growth, yield, and food security; thus, warranting appropriate measures for the remediation of Pb polluted soils. Phytoextraction of heavy metals (HMs) using tolerant plants along with organic chelators has gained global attention. Thus, this study examines the possible influence of citric acid (CA) on unveiling the potential phytoextraction of Pb by using castor beans. For this purpose, different levels of Pb (0, 300, 600 mg kg−1 of soil) and CA (0, 2.5, and 5 mM) were supplied alone and in all possible combinations. The results indicate that elevated levels of Pb (especially 600 mg kg−1 soil) induce oxidative stress, including hydrogen peroxide (H2O2) and malanodialdehyde (MDA) production in plants. The Pb stress reduces the photosynthetic traits (chlorophyll and gas exchange parameters) in the tissues of plants (leaves and roots), which ultimately lead to a reduction in growth as well as biomass. Enzyme activities such as guaiacol peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase are also linearly increased in a dose-dependent manner under Pb stress. The exogenous application of CA reduced the Pb toxicity in plants by improving photosynthesis and, ultimately, plant growth. The upsurge in antioxidants against oxidative stress shows the potential of CA-treated castor beans plants to counteract stress injuries by lowering H2O2 and MDA levels. From the results of this study, it can be concluded that CA treatments play a promising role in increasing the uptake of Pb and reducing its phytotoxicity. These outcomes recommend that CA application could be an effective approach for the phytoextraction of Pb from polluted soils by growing castor beans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Waheed Akram ◽  
Waheed Ullah Khan ◽  
Anis Ali Shah ◽  
Nasim Ahmad Yasin ◽  
Guihua Li

Current research was conducted to explore the effects of liquiritoside on the growth and physiochemical features of Chinese flowering cabbage (Brassica rapa subsp. parachinensis) under lead (Pb) stress. Lead stressed B. rapa plants exhibited decreased growth parameters, chlorophyll, and carotenoid contents. Moreover, Pb toxicity escalated the synthesis of malondialdehyde (MDA), hydrogen peroxide (H2O2), flavonoids, phenolics, and proline in treated plants. Nevertheless, foliar application of liquiritoside mitigated Pb toxicity by decreasing oxidative stress by reducing cysteine, H2O2, and MDA contents in applied plants. Liquiritoside significantly increased plant height, shoot fresh weight and dry weight, number of leaves, and marketable value of Chinese flowering cabbage plants exposed to Pb toxicity. This biotic elicitor also enhanced the proline, glutathione, total phenolics, and flavonoid contents in Chinese flowering cabbage plants exposed to Pb stress compared with the control. Additionally, total glucosinolate content, phytochelatins (PCs), and non-protein thiols were effectively increased in plants grown under Pb regimes compared with the control plants. Overall, foliar application of liquiritoside can markedly alleviate Pb stress by restricting Pb translocation in Chinese flowering cabbage.


2018 ◽  
Vol 8 ◽  
pp. 1415-1423 ◽  
Author(s):  
Afnan Freije

The effect of foliar ALA application on the internal ALA concentration in tomato plants grown in soil containing high levels of NaCl  was investigated. Six week old plants were treated with 100, 50, and 25 mmol/L NaCl on a weekly basis and they were simultaneously treated with 5-ALA at a concentration of 5%  by foliar spray. The effect of foliar ALA application on plant growth, chlorophyll contents and internal ALA concentration was studied. The internal ALA shoot concentrations ranged between 27.50±2.12 and 34.35±1.48 µg g-1 dry weight with no significant difference (p<0.05) recorded between plants treated with NaCl alone and those treated with both NaCl and ALA. The concentrations of chlorophyll a and b were elevated only in tomato plants treated with NaCl and ALA, whereas their levels decreased in plants treated with NaCl only. An adverse significant effect (p<0.05) of salinity stress was recorded on plants length, number of leaves, shoot and root fresh and dry weight. However, no significant difference  (p<0.05) was observed in plants treated with  NaCl alone with those treated with  NaCl plus ALA in comparison to the control. The results of the present study suggested that foliar ALA treatment had no effect on the Na and Cl uptake, the internal ALA concentration, and had no role in adverting the effects of salinity on plant growth. The present study has proven that foliar ALA is directly used by the plant for the synthesis of chlorophyll in order to increase the photosynthetic rate and thus to help tomato plants to survive the salinity stress.


2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


2021 ◽  
Vol 43 (4) ◽  
Author(s):  
Agnieszka Ostrowska ◽  
Maciej T. Grzesiak ◽  
Tomasz Hura

AbstractSoil drought is a major problem in plant cultivation. This is particularly true for thermophilic plants, such as maize, which grow in areas often affected by precipitation shortage. The problem may be alleviated using plant growth and development stimulators. Therefore, the aim of the study was to analyze the effects of 5-aminolevulinic acid (5-ALA), zearalenone (ZEN), triacontanol (TRIA) and silicon (Si) on water management and photosynthetic activity of maize under soil drought. The experiments covered three developmental stages: three leaves, stem elongation and heading. The impact of these substances applied during drought stress depended on the plant development stage. 5-ALA affected chlorophyll levels, gas exchange and photochemical activity of PSII. Similar effects were observed for ZEN, which additionally induced stem elongation and limited dehydration. Beneficial effects of TRIA were visible at the stage of three leaves and involved leaf hydration and plant growth. A silicon preparation applied at the same developmental stage triggered similar effects and additionally induced changes in chlorophyll levels. All the stimulators significantly affected transpiration intensity at the heading stage.


2011 ◽  
Vol 6 (No. 1) ◽  
pp. 21-29 ◽  
Author(s):  
H. Khaled ◽  
H.A. Fawy

In this study, the effects were investigated of salinity, foliar and soil applications of humic substances on the growth and mineral nutrients uptake of Corn (Hagein, Fardy10), and the comparison was carried out of the soil and foliar applications of humic acid treatments at different NaCl levels. Soil organic contents are one of the most important parts that they directly affect the soil fertility and textures with their complex and heterogenous structures although they occupy a minor percentage of the soil weight. Humic acids are an important soil component that can improve nutrient availability and impact on other important chemical, biological, and physical properties of soils. The effects of foliar and soil applications of humic substances on the plant growth and some nutrient elements uptake of Corn (Hagein, Fardy10) grown at various salt concentrations were examined. Sodium chloride was added to the soil to obtain 20 and 60mM saline conditions. Solid humus was applied to the soil one month before planting and liquid humic acids were sprayed on the leaves twice on 20<sup>th</sup> and 40<sup>th</sup> day after seedling emergence. The application doses of solid humus were 0, 2 and 4 g/kg and those of liquid humic acids were 0, 0.1 and 0.2%. Salinity negatively affected the growth of corn; it also decreased the dry weight and the uptake of nutrient elements except for Na and Mn. Soil application of humus increased the N uptake of corn while foliar application of humic acids increased the uptake of P, K, Mg,Na,Cu and Zn. Although the effect of interaction between salt and soil humus application was found statistically significant, the interaction effect between salt and foliar humic acids treatment was not found significant. Under salt stress, the first doses of both soil and foliar application of humic substances increased the uptake of nutrients.


Sign in / Sign up

Export Citation Format

Share Document