scholarly journals Bifurcation Analysis of a Delayed Predator-Prey Model with Holling Type III Functional Response and Predator Harvesting

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Uttam Das ◽  
T. K. Kar

This paper tries to highlight a delayed prey-predator model with Holling type III functional response and harvesting to predator species. In this context, we have discussed local stability of the equilibria, and the occurrence of Hopf bifurcation of the system is examined by considering the harvesting effort as bifurcation parameter along with the influences of harvesting effort of the system when time delay is zero. Direction of Hopf bifurcation and the stability of bifurcating periodic solutions are also studied by applying the normal form theory and the center manifold theorem. Lastly some numerical simulations are carried out to draw for the validity of the theoretical results.

2009 ◽  
Vol 02 (02) ◽  
pp. 139-149 ◽  
Author(s):  
LINGSHU WANG ◽  
RUI XU ◽  
GUANGHUI FENG

A predator–prey model with time delay and Holling type-II functional response is investigated. By choosing time delay as the bifurcation parameter and analyzing the associated characteristic equation of the linearized system, the local stability of the system is investigated and Hopf bifurcations are established. The formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Xinhong Pan ◽  
Min Zhao ◽  
Chuanjun Dai ◽  
Yapei Wang

A predator-prey model with modified Holling-Tanner functional response and time delays is considered. By regarding the delays as bifurcation parameters, the local and global asymptotic stability of the positive equilibrium are investigated. The system has been found to undergo a Hopf bifurcation at the positive equilibrium when the delays cross through a sequence of critical values. In addition, the direction of the Hopf bifurcation and the stability of bifurcated periodic solutions are also studied, and an explicit algorithm is obtained by applying normal form theory and the center manifold theorem. The main results are illustrated by numerical simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is devoted to the study of an SIRS computer virus propagation model with two delays and multistate antivirus measures. We demonstrate that the system loses its stability and a Hopf bifurcation occurs when the delay passes through the corresponding critical value by choosing the possible combination of the two delays as the bifurcation parameter. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the center manifold theorem and the normal form theory. Finally, some numerical simulations are performed to illustrate the obtained results.


2018 ◽  
Vol 5 (1) ◽  
pp. 138-151 ◽  
Author(s):  
Jai Prakash Tripathi ◽  
Swati Tyagi ◽  
Syed Abbas

AbstractIn this paper, we study a predator-prey model with prey refuge and delay. We investigate the combined role of prey refuge and delay on the dynamical behaviour of the delayed system by incorporating discrete type gestation delay of predator. It is found that Hopf bifurcation occurs when the delay parameter τ crosses some critical value. In particular, it is shown that the conditions obtained for the Hopf bifurcation behaviour are sufficient but not necessary and the prey reserve is unable to stabilize the unstable interior equilibrium due to Hopf bifurcation. In particular, the direction and stability of bifurcating periodic solutions are determined by applying normal form theory and center manifold theorem for functional differential equations. Mathematically, we analyze the effect of increase or decrease of prey reserve on the equilibrium states of prey and predator species. At the end, we perform some numerical simulations to substantiate our analytical findings.


2005 ◽  
Vol 15 (09) ◽  
pp. 2883-2893 ◽  
Author(s):  
XIULING LI ◽  
JUNJIE WEI

A simple delayed neural network model with four neurons is considered. Linear stability of the model is investigated by analyzing the associated characteristic equation. It is found that Hopf bifurcation occurs when the sum of four delays varies and passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. An example is given and numerical simulations are performed to illustrate the obtained results. Meanwhile, the bifurcation set is provided in the appropriate parameter plane.


Author(s):  
Jiangang Zhang ◽  
Yandong Chu ◽  
Wenju Du ◽  
Yingxiang Chang ◽  
Xinlei An

AbstractThe stability and Hopf bifurcation of a delayed SIS epidemic model with double epidemic hypothesis are investigated in this paper. We first study the stability of the unique positive equilibrium of the model in four cases, and we obtain the stability conditions through analyzing the distribution of characteristic roots of the corresponding linearized system. Moreover, we choosing the delay as bifurcation parameter and the existence of Hopf bifurcation is investigated in detail. We can derive explicit formulas for determining the direction of the Hopf bifurcation and the stability of bifurcation periodic solution by center manifold theorem and normal form theory. Finally, we perform the numerical simulations for justifying the theoretical results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zizhen Zhang ◽  
Fangfang Yang ◽  
Wanjun Xia

This paper is concerned with the Hopf bifurcation of a synthetic drug transmission model with two delays. Firstly, some sufficient conditions of delay-induced bifurcation for such a model are captured by using different combinations of the two delays as the bifurcation parameter. Secondly, based on the center manifold theorem and normal form theory, some sufficient conditions determining properties of the Hopf bifurcation such as the direction and the stability are established. Finally, to underline the effectiveness of the obtained results, some numerical simulations are ultimately addressed.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Massimiliano Ferrara ◽  
Luca Guerrini ◽  
Giovanni Molica Bisci

Matsumoto and Szidarovszky (2011) examined a delayed continuous-time growth model with a special mound-shaped production function and showed a Hopf bifurcation that occurs when time delay passes through a critical value. In this paper, by applying the center manifold theorem and the normal form theory, we obtain formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Moreover, Lindstedt’s perturbation method is used to calculate the bifurcated periodic solution, the direction of the bifurcation, and the stability of the periodic motion resulting from the bifurcation.


Sign in / Sign up

Export Citation Format

Share Document