scholarly journals Fast Mode Decision for 3D-HEVC Depth Intracoding

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qiuwen Zhang ◽  
Nana Li ◽  
Qinggang Wu

The emerging international standard of high efficiency video coding based 3D video coding (3D-HEVC) is a successor to multiview video coding (MVC). In 3D-HEVC depth intracoding, depth modeling mode (DMM) and high efficiency video coding (HEVC) intraprediction mode are both employed to select the best coding mode for each coding unit (CU). This technique achieves the highest possible coding efficiency, but it results in extremely large encoding time which obstructs the 3D-HEVC from practical application. In this paper, a fast mode decision algorithm based on the correlation between texture video and depth map is proposed to reduce 3D-HEVC depth intracoding computational complexity. Since the texture video and its associated depth map represent the same scene, there is a high correlation among the prediction mode from texture video and depth map. Therefore, we can skip some specific depth intraprediction modes rarely used in related texture CU. Experimental results show that the proposed algorithm can significantly reduce computational complexity of 3D-HEVC depth intracoding while maintaining coding efficiency.

Author(s):  
Umesh Kaware ◽  
Sanjay Gulhane

The emerging High Efficiency Video Coding (HEVC) standard is a new improved next generation video coding standard. HEVC aims to provide improved compression performance as compared to all other video coding standards. To improve the coding efficiency a number of new techniques have been used. The higher compression efficiency is obtained at the cost of an increase in the computational load. In HEVC 35 modes are provided for intra prediction to improve the compression efficiency. The best mode is selected by Rate Distortion Optimization (RDO) process. It achieves significant improvement in coding efficiency compared with previous standards. However, this causes high encoding complexity. This paper discuss the various fast mode decision algorithms for intra prediction in HEVC.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
L. Balaji ◽  
K. K. Thyagharajan

H.264 Advanced Video Coding (AVC) was prolonged to Scalable Video Coding (SVC). SVC executes in different electronics gadgets such as personal computer, HDTV, SDTV, IPTV, and full-HDTV in which user demands various scaling of the same content. The various scaling is resolution, frame rate, quality, heterogeneous networks, bandwidth, and so forth. Scaling consumes more encoding time and computational complexity during mode selection. In this paper, to reduce encoding time and computational complexity, a fast mode decision algorithm based on likelihood mode decision (LMD) is proposed. LMD is evaluated in both temporal and spatial scaling. From the results, we conclude that LMD performs well, when compared to the previous fast mode decision algorithms. The comparison parameters are time, PSNR, and bit rate. LMD achieve time saving of 66.65% with 0.05% detriment in PSNR and 0.17% increment in bit rate compared with the full search method.


2020 ◽  
pp. short57-1-short57-8
Author(s):  
Ban Doan ◽  
Andrey Tropchenko

In order to achieve greater coding efficiency compared with the previous video coding standards, various advanced coding techniques are used in the High Efficiency Video Coding (HEVC) standard, such as a flexible partition and a large number of intra prediction modes. However, these techniques lead to much greater complexity that restricts HEVC from realtime applications. To solve this problem, a fast intra mode decision algorithm is proposed in this paper that uses the block’s textural properties to determine the partition depth range and decide whether to split or skip smaller sizes of the coding unit. Besides that, the number of candidate modes for the rough mode decision process is also reduced depending on the block’s property. Experimental results for the recommended test sequences by the JCT-VC show that the proposed algorithm can save an average of 44% encoder time with a slight loss in performance compared to the reference software HM-16.20.


Author(s):  
Peter Lambert ◽  
Stefaan Mys ◽  
Jozef Škorupa ◽  
Jürgen Slowack ◽  
Rik Van de Walle ◽  
...  

The latest video coding standard (Wiegand, 2003), H.264/AVC, uses variable block sizes ranging from 16x16 to 4x4 to perform motion estimation in inter-frame coding and a rich set of prediction patterns for intra-frame coding. Then a robust RDO (Rate Distortion Optimization) technique is employed to select the best coding mode and reference frame for each macroblock. As a result, H.264/AVC exhibits high coding efficiency compared to older video coding standards [2, 3] and shows significant future promise in the fields of video broadcasting and communication. However, high coding efficiency also carries high computational complexity. Fast mode decision is one of the key techniques to significantly reducing computational complexity for a similar RD (Rate Distortion) performance. This chapter provides an up-to-date critical survey of fast mode decision techniques for the H.264/AVC standard. The motivation for this chapter is twofold: Firstly to provide an up-to-data review of the existing techniques and secondly to offer some insights into the studies of fast mode decision techniques.


2013 ◽  
Vol 52 (1) ◽  
pp. 017401 ◽  
Author(s):  
Tae-Jung Kim ◽  
Jeong-Ju Yoo ◽  
Jin-Woo Hong ◽  
Jae-Won Suh

Sign in / Sign up

Export Citation Format

Share Document