scholarly journals Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
WoonSeong Jeong ◽  
Jong Bum Kim ◽  
Mark J. Clayton ◽  
Jeff S. Haberl ◽  
Wei Yan

This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation intoModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated fromRevit2Modelicaand (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows thatBIM2BEM(1) enables BIM models to be translated intoModelicaBEMmodels, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

2020 ◽  
Vol 6 ◽  
Author(s):  
Mohamed H. Elnabawi

There is increasing need to apply building information modeling (BIM) to low energy buildings, this includes building energy modeling (BEM). If a building energy model can be flawlessly generated from a BIM model, the energy simulation process can be better integrated within the design, can be more competent, and timesaving. However, concerns about both the reliability and integrity of the data transfer process and the interoperability between the BIM and BEM prevent any implementation of BIM-based energy modeling on a large scale. This study addresses the accuracy and integrity of BIM-based energy modeling by investigating how well Autodesk's Revit (BIM), in conjunction with two of the most used energy modeling programs (BEM) known as DesignBuilder and Virtual Environment (IES-ve), were integrated in terms of interoperability, including location and weather files, geometry, construction and materials, thermal zones, occupancy operating schedules, and HVAC systems. All misrepresented data during the interoperability process were identified, followed by benchmarking between the BIM-based energy modeling simulation outcomes and the actual energy consumption of the case study, to assess the reliability of the process. The investigation has revealed a number of interoperability issues regarding the BIM data input and BEM data interpretation. Overall, BIM-based energy modeling proved to be a promising tool for sustainable and low energy building design, however, the BIM to BEM process is a non-standardized method of producing building energy models as it varies from one modeler to another, and the BIM to BEM process. All these might slow down any possible application for the process and might cause some uncertainties for the professionals in the field applying it.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5519
Author(s):  
Sanjin Gumbarević ◽  
Ivana Burcar Dunović ◽  
Bojan Milovanović ◽  
Mergim Gaši

With the increasing number of nearly zero-energy buildings (NZEB) due to increase of global awareness on climate change, the new concepts of design and control must be developed because of great NZEB dependency on detailing and multidisciplinary approach. This paper proposes a three-level gateway control method for NZEB project delivery by using digital representation of the building in building information modeling (BIM) environment. These controls (C1, C2 and C3) are introduced before three main phases of any project delivery—design phase, construction phase and handover. The proposed project control procedure uses black-box building energy modeling within the BIM environment, so the paper explores the reliability of one tool for direct energy modeling within the BIM-authoring software. The paper shows two types of validation tests with satisfactory results. This leads to conclusion that analyzed tool for energy simulation within BIM environment can be used in a way that is described in a proposed project control procedure. For further research it is proposed to explore reliability of tools for energy simulation connected to other BIM-authoring software, so this project control procedure could be independent of BIM-authoring software used in the paper.


2013 ◽  
Vol 860-863 ◽  
pp. 2834-2837
Author(s):  
Jing Ling Yuan ◽  
Rui Tu ◽  
Yan Yuan ◽  
Jing Xie

With the constant development of global information technology in building industry, different vendors utilize their own format to store building information modeling; however the incompatibility among these formats obstructs the use and share of the modeling information. Targeting the information exchange and share in each phase of the whole building lifecycle and promoting the energy saving and emission reducing buildings, this paper introduces the information on IFC standards, then discusses the mainstream share formats (.ifc and .ifcXML) in building industry, and compares and analyzes the differences between them, in order to provide leading support for the management platform of data information on building energy efficiency.


Author(s):  
Aaron Costin ◽  
Hanjin Hu ◽  
Ronald Medlock

The recent push to adopt building information modeling (BIM) for bridges and structures in the transportation industry has encountered major barriers owing to the lack of standardization. Unlike the building industry that has the National BIM Standard®–United States (NBIMS-US™) as a formal open platform standard and guide for the development of interoperable BIM software, the transportation industry does not currently have a similar open platform standard to enable the creation of interoperable BIM software to serve the needs of transportation stakeholders. The purpose of this paper is to present the findings of the research for one of the first use cases and development of data exchange requirements and model view definitions in adopting the open platform NBIMS-US applied to bridges and structures for the U.S. transportation industry. A subcommittee of the American Association of State Highway and Transportation Officials and the National Steel Bridge Alliance Steel Bridge Collaboration was formed to conduct a pilot study into the creation of information delivery manuals (IDMs) for steel bridges. This study served as pilot for the development of future IDMs in the transportation industry. As a result, the current IDM for Steel Bridge Detailing and Fabrication serves as the starting point of TPF-5(372) BIM for Bridges and Structures development of the Design to Fabrication model view definition. Finally, this study provided the outcomes and recommendations needed to expedite the development of IDMs for other use cases in the bridge and transportation industry.


2021 ◽  
Author(s):  
Angela Cristina De Hugo Silva ◽  
Metod Gaber ◽  
Matevž Dolenc

Building Information Modeling is an increasingly common process for managing the entire lifecycle of a building - from design and planning, through the construction phase, to operation and maintenance. The result of this process is a building information model with all the generated data and information about the construction process that can be used in a variety of different end-user scenarios. One such use of the model is in a number of different augmented reality applications. Augmented reality technology is being used to bridge the gap between the digital and real worlds and is rapidly becoming an essential part of modern building data modeling design workflows. The chapter provides an overview of building data modeling and the current state of the art in the use of augmented reality in various user scenarios of building data modeling and explores various challenges that need to be addressed for the adoption of augmented reality technology in architecture, engineering, and construction in general.


Sign in / Sign up

Export Citation Format

Share Document