scholarly journals Forecasting Crude Oil Price with Multiscale Denoising Ensemble Model

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xia Li ◽  
Kaijian He ◽  
Kin Keung Lai ◽  
Yingchao Zou

Crude oil price becomes more volatile and sensitive to increasingly diversified influencing factors with higher level of deregulations worldwide. Current methodologies are being challenged as they have been constrained by traditional approaches assuming homogeneous time horizons and investment strategies. Approximations they provided over the long term time horizon no longer satisfy the accuracy requirement at shorter term and more microlevels. This paper proposes a novel crude oil price forecasting model based on the wavelet denoising ARMA models ensemble by least square support vector regression with the reduced forecasting matrix dimensions by independent component analysis. The proposed methodology combines the multi resolution analysis and nonlinear ensemble framework. The wavelet denoising based algorithm is introduced to separate and extract the underlying data components with distinct features, corresponding to investors with different investment scales, which are modeled with time series models of different specifications and parameters. Then least square support vector regression is introduced to nonlinearly ensemble results based on different wavelet families to further reduce the estimation biases and improve the forecasting generalizability. Empirical studies show the significant performance improvement when the proposed model is tested against the bench-mark models.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Li Shu-rong ◽  
Ge Yu-lei

A new accurate method on predicting crude oil price is presented, which is based onε-support vector regression (ε-SVR) machine with dynamic correction factor correcting forecasting errors. We also propose the hybrid RNA genetic algorithm (HRGA) with the position displacement idea of bare bones particle swarm optimization (PSO) changing the mutation operator. The validity of the algorithm is tested by using three benchmark functions. From the comparison of the results obtained by using HRGA and standard RNA genetic algorithm (RGA), respectively, the accuracy of HRGA is much better than that of RGA. In the end, to make the forecasting result more accurate, the HRGA is applied to the optimize parameters ofε-SVR. The predicting result is very good. The method proposed in this paper can be easily used to predict crude oil price in our life.


Author(s):  
Lee Jo Xian ◽  
Shuhaida Ismail ◽  
Aida Mustapha ◽  
Mohd Helmy Abd Wahab ◽  
Syed Zulkarnain Syed Idrus

Author(s):  
Nanda Adhi Purusa ◽  
Nurul Istiqomah

The effects of foreign direct investment (FDI), crude oil price and inflation on the export are mainly examined in the case of Indonesia, Malaysia, Philippines, Thailand, and Vietnam by using data from 2000 to 2015. These countries have opportunity to increased prosperity in the ASEAN Economic Community (AEC). Therefore, increasing productivity and international trading are important for each country. This study employed panel data model in the analyses and the findings show that Fixed Effect Model with Generalized Least Square method is implemented.  Hence, using this method is determined by likelihood test and Hausman test. The statistical tests in this study consist of partial coefficient test, stimulant, and coefficient of determination. The result shows that FDI and crude oil price have positive effect and significant on export, but inflation has negative effect and significant on export. Constant value shows that each country has the difference condition. Simple bureaucracy is needed to increased efficiency that will attract foreign investors to invest their fund and the discovery of alternative energy and new production technique can increase a country productivity significantly in producing goods or services for both domestic and export-oriented.


2019 ◽  
Vol 10 (4) ◽  
pp. 25-37
Author(s):  
Ayodele Lasisi ◽  
Nasser Tairan ◽  
Rozaida Ghazali ◽  
Wali Khan Mashwani ◽  
Sultan Noman Qasem ◽  
...  

The need to accurately predict and make right decisions regarding crude oil price motivates the proposition of an alternative algorithmic method based on real-valued negative selection with variable-sized detectors (V-Detectors), by incorporating with fuzzy-rough set feature selection (FRFS) for predicting the most appropriate choices. The objective of this study is enhancing the performance of V-Detectors using FRFS for prices of crude oil. Applying FRFS serves to prune the number of features by retaining the most informative and critical features. The V-Detectors then trains and tests the features. Different radius values are applied for V-Detectors. Experimental outcome in comparison with established algorithms such as support vector machine, naïve bayes, multi-layer perceptron, J48, non-nested generalized exemplars, IBk, fuzzy-roughNN, and vaguely quantified nearest neighbor demonstrates that FRFS-V-Detectors is proficient and valuable for insightful knowledge on crude oil price. Thus, it can assist in establishing oil price market policies on the international scale.


2014 ◽  
Vol 2 (3) ◽  
pp. 193-205 ◽  
Author(s):  
Haibin Xie ◽  
Mo Zhou ◽  
Yi Hu ◽  
Mei Yu

AbstractExtreme values are usually given special attention. Using a decomposition-based vector autoregressive (VAR) model, this paper investigates the additional information of extreme values for forecasting the crude oil price. Empirical studies performed on the WTI spot crude oil price over year 1986-2013 are positive: decomposition-based VAR model produces significant both in-sample and out-of-sample forecast. Different evaluation tests are used and the results unanimously report the dominance of decomposition-based VAR over both efficient market model and ARIMA model. These findings are important as they hint that forecasts can be improved if high-low extreme information is properly used. An even more interesting finding is that the predictability of the crude oil price is asymmetric: crude oil price is more predictable in recession than in expansion. This finding is of great significance as it means there is information friction in the oil market especially when the oil price is in recession.


Sign in / Sign up

Export Citation Format

Share Document