scholarly journals Computer Aided-Diagnosis of Prostate Cancer on Multiparametric MRI: A Technical Review of Current Research

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shijun Wang ◽  
Karen Burtt ◽  
Baris Turkbey ◽  
Peter Choyke ◽  
Ronald M. Summers

Prostate cancer (PCa) is the most commonly diagnosed cancer among men in the United States. In this paper, we survey computer aided-diagnosis (CADx) systems that use multiparametric magnetic resonance imaging (MP-MRI) for detection and diagnosis of prostate cancer. We review and list mainstream techniques that are commonly utilized in image segmentation, registration, feature extraction, and classification. The performances of 15 state-of-the-art prostate CADx systems are compared through the area under their receiver operating characteristic curves (AUC). Challenges and potential directions to further the research of prostate CADx are discussed in this paper. Further improvements should be investigated to make prostate CADx systems useful in clinical practice.

2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Saleem Z. Ramadan

According to the American Cancer Society’s forecasts for 2019, there will be about 268,600 new cases in the United States with invasive breast cancer in women, about 62,930 new noninvasive cases, and about 41,760 death cases from breast cancer. As a result, there is a high demand for breast imaging specialists as indicated in a recent report for the Institute of Medicine and National Research Council. One way to meet this demand is through developing Computer-Aided Diagnosis (CAD) systems for breast cancer detection and diagnosis using mammograms. This study aims to review recent advancements and developments in CAD systems for breast cancer detection and diagnosis using mammograms and to give an overview of the methods used in its steps starting from preprocessing and enhancement step and ending in classification step. The current level of performance for the CAD systems is encouraging but not enough to make CAD systems standalone detection and diagnose clinical systems. Unless the performance of CAD systems enhanced dramatically from its current level by enhancing the existing methods, exploiting new promising methods in pattern recognition like data augmentation in deep learning and exploiting the advances in computational power of computers, CAD systems will continue to be a second opinion clinical procedure.


2018 ◽  
Vol 122 (3) ◽  
pp. 411-417 ◽  
Author(s):  
Junichiro Ishioka ◽  
Yoh Matsuoka ◽  
Sho Uehara ◽  
Yosuke Yasuda ◽  
Toshiki Kijima ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 973
Author(s):  
Valentina Giannini ◽  
Simone Mazzetti ◽  
Giovanni Cappello ◽  
Valeria Maria Doronzio ◽  
Lorenzo Vassallo ◽  
...  

Recently, Computer Aided Diagnosis (CAD) systems have been proposed to help radiologists in detecting and characterizing Prostate Cancer (PCa). However, few studies evaluated the performances of these systems in a clinical setting, especially when used by non-experienced readers. The main aim of this study is to assess the diagnostic performance of non-experienced readers when reporting assisted by the likelihood map generated by a CAD system, and to compare the results with the unassisted interpretation. Three resident radiologists were asked to review multiparametric-MRI of patients with and without PCa, both unassisted and assisted by a CAD system. In both reading sessions, residents recorded all positive cases, and sensitivity, specificity, negative and positive predictive values were computed and compared. The dataset comprised 90 patients (45 with at least one clinically significant biopsy-confirmed PCa). Sensitivity significantly increased in the CAD assisted mode for patients with at least one clinically significant lesion (GS > 6) (68.7% vs. 78.1%, p = 0.018). Overall specificity was not statistically different between unassisted and assisted sessions (94.8% vs. 89.6, p = 0.072). The use of the CAD system significantly increases the per-patient sensitivity of inexperienced readers in the detection of clinically significant PCa, without negatively affecting specificity, while significantly reducing overall reporting time.


2018 ◽  
pp. 87-163
Author(s):  
Guillaume Lemaître ◽  
Robert Martí ◽  
Fabrice Meriaudeau

Sign in / Sign up

Export Citation Format

Share Document