scholarly journals The Elements of Water Balance in the Changing Climate in Poland

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Małgorzata Szwed

Strong global warming has been observed in the last three decades. Central Europe, including Poland, is not an exception. Moreover, climate projections for Poland foresee further warming as well as changes in the spatial and seasonal distribution and quantity of precipitation. However, climate models do not agree on the sign of change of precipitation. In Poland precipitation is projected to decrease in summer (this finding is not robust, being model-dependent) and to increase in winter. Therefore, there is still considerable uncertainty regarding likely climate change impacts on water resources in Poland. However, there is no doubt that changes in the thermal characteristics as well as in precipitation will influence changes in the water balance of the country. In this study, the components of climatic water balance, that is, precipitation, evaporation, and runoff, are calculated for the average conditions in the control period of 1961–1990 and in the future (2071–2100) in Poland. The changes of the water balance components for the present and for the future are compared and analysed. Due to insufficient consistency between climate models a possible range of changes should be presented; hence the multimodel projections from ENSEMBLES Project of the European Union are used in this study.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2266 ◽  
Author(s):  
Enrique Soriano ◽  
Luis Mediero ◽  
Carlos Garijo

Climate projections provided by EURO-CORDEX predict changes in annual maximum series of daily rainfall in the future in some areas of Spain because of climate change. Precipitation and temperature projections supplied by climate models do not usually fit exactly the statistical properties of the observed time series in the control period. Bias correction methods are used to reduce such errors. This paper seeks to find the most adequate bias correction techniques for temperature and precipitation projections that minimizes the errors between observations and climate model simulations in the control period. Errors in flood quantiles are considered to identify the best bias correction techniques, as flood quantiles are used for hydraulic infrastructure design and safety assessment. In addition, this study aims to understand how the expected changes in precipitation extremes and temperature will affect the catchment response in flood events in the future. Hydrological modelling is required to characterize rainfall-runoff processes adequately in a changing climate, in order to estimate flood changes expected in the future. Four catchments located in the central-western part of Spain have been selected as case studies. The HBV hydrological model has been calibrated in the four catchments by using the observed precipitation, temperature and streamflow data available on a daily scale. Rainfall has been identified as the most significant input to the model, in terms of its influence on flood response. The quantile mapping polynomial correction has been found to be the best bias correction method for precipitation. A general reduction in flood quantiles is expected in the future, smoothing the increases identified in precipitation quantiles by the reduction of soil moisture content in catchments, due to the expected increase in temperature and decrease in mean annual precipitations.


2012 ◽  
Vol 3 (1) ◽  
pp. 55-78 ◽  
Author(s):  
Noora Veijalainen ◽  
Johanna Korhonen ◽  
Bertel Vehviläinen ◽  
Harri Koivusalo

In this study climate change impacts on water balance components were estimated from transient climate scenarios for 1951–2099 in Finland. The future changes in evapotranspiration and discharge in annual and seasonal scales as well as annual mean high and low flows were projected for four catchments in different parts of Finland. The assessment was carried out using temperature and precipitation series simulated by four regional climate models (RCMs) as input to a conceptual hydrological model. The daily data from RCMs was bias corrected with the quantile–quantile mapping method and statistical properties of the simulated discharges were analysed to detect trends over time. Without bias correction the simulated discharges in the control period did not match the observed discharges, but the fit was improved considerably after bias correction. The results showed that seasonal changes, most importantly increase in winter runoff, were clearly visible and consistent in different climate scenarios and catchments. Individual scenarios also produced changes in annual mean, high and low flows, but without consistency in scenarios. The use of bias corrected RCM data as input to the hydrological model enables transient simulations, but the simulation results aggregate considerable uncertainties from the climate modelling, bias correction and the hydrological model.


2018 ◽  
Vol 10 (5) ◽  
pp. 61
Author(s):  
Edmund Mutayoba ◽  
Japhet J. Kashaigili ◽  
Frederick C. Kahimba ◽  
Winfred Mbungu ◽  
Nyemo A. Chilagane

This study assesses the impacts of climate change on water resources over Mbarali River sub-catchment using high resolution climate simulations from the Coordinated Regional Climate Downscaling Experiment Regional Climate Models (CORDEX_RCMs). Daily rainfall, minimum and maximum temperatures for historical climate (1971-2000) and for the future climate projection (2011-2100) under two Representative Concentration Pathways RCP 8.5 and RCP 4.5 were used as input into the Soil and Water Assessment Tool (SWAT) hydrological model to simulate stream flows and water balance components for the Mbarali River sub-catchment. The impacts of climate change on hydrological conditions over Mbarali river catchment were assessed by comparing the mean values of stream flows and water balance components during the present (2011-2040), mid (2041-2070) and end (2071-2100) centuries with their respective mean values in the baseline (1971-2000) climate condition. The results of the study indicate that, in the future, under both RCP 4.5 and RCP 8.5 emission scenarios, the four main components that determine change in catchment water balance (rainfall, ground water recharge, evaporation and surface runoff) over Mbarali river catchment are projected to increase. While the stream flows are projected to decline in the future by 13.33% under RCP 4.5 and 13.67% under RCP 8.5 emission scenarios, it is important to note that simulated surface runoff under RCP8.5 emission scenario is higher than that which is obtained under the RCP4.5 emission scenario.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 712
Author(s):  
Mamadou Lamine Mbaye ◽  
Mouhamadou Bamba Sylla ◽  
Moustapha Tall

This study assesses the changes in precipitation (P) and in evapotranspiration (ET) under 1.5 °C and 2.0 °C global warming levels (GWLs) over Senegal in West Africa. A set of twenty Regional Climate Model (RCM) simulations within the Coordinated Regional Downscaling Experiment (CORDEX) following the Representative Concentration Pathways (RCP) 4.5 emission scenario is used. Annual and seasonal changes are computed between climate simulations under 1.5 °C and 2.0 °C warming, with respect to 0.5 °C warming, compared to pre-industrial levels. The results show that annual precipitation is likely to decrease under both magnitudes of warming; this decrease is also found during the main rainy season (July, August, September) only and is more pronounced under 2 °C warming. All reference evapotranspiration calculations, from Penman, Hamon, and Hargreaves formulations, show an increase in the future under the two GWLs, except annual Penman evapotranspiration under the 1.5 °C warming scenario. Furthermore, seasonal and annual water balances (P-ET) generally exhibit a water deficit. This water deficit (up to 180 mm) is more substantial with Penman and Hamon under 2 °C. In addition, analyses of changes in extreme precipitation reveal an increase in dry spells and a decrease in the number of wet days. However, Senegal may face a slight increase in very wet days (95th percentile), extremely wet days (99th), and rainfall intensity in the coming decades. Therefore, in the future, Senegal may experience a decline in precipitation, an increase of evapotranspiration, and a slight increase in heavy rainfall. Such changes could have serious consequences (e.g., drought, flood, etc.) for socioeconomic activities. Thus, strong governmental politics are needed to restrict the global mean temperature to avoid irreversible negative climate change impacts over the country. The findings of this study have contributed to a better understanding of local patterns of the Senegal hydroclimate under the two considered global warming scenarios.


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


2021 ◽  
Author(s):  
Ivan Vorobevskii ◽  
Rico Kronenberg

<p>‘Just drop a catchment and receive reasonable model output’ – still stays as motto and main idea of the ‘Global BROOK90’ project. The open-source R-package is build-up on global land cover, soil, topographical, meteorological datasets and the lumped hydrological model as a core to simulate water balance components on HRU scale all over the world in an automatic mode. First introduced in EGU2020 and followed by GitHub code release including an publication of methodology with few examples we want to continue with the insights on the current state and highlight the future steps of the project.</p><p>A global validation of discharge and evapotranspiration components of the model showed promising results. We used 190 small (median size of 64 km<sup>2</sup>) catchments and FLUXNET data which represent a wide range of relief, vegetation and soil types within various climate zones. The model performance was evaluated with NSE, KGE, KGESS and MAE. In more than 75 % of the cases the framework performed better than the mean of the observed discharge. On a temporal scale the performance is significantly better on a monthly vs daily scale. Cluster analysis revealed that some of the site characteristics have a significant influence on the performance. Additionally, it was found that Global BROOK90 outperforms GloFAS ERA5 discharge reanalysis (for the category with smallest catchments).</p><p>A cross-combination of three different BROOK90 setups and three forcing datasets was set up to reveal uncertainties of the Global BROOK90 package using a small catchment in Germany as a case study. Going from local to regional and finally global scale we compared mixtures of model parameterization schemes (original calibrated BROOK90, EXTRUSO and Global BROOK90) and meteorological datasets (local gauges, RaKlida and ERA5). Besides high model performances for a local dataset plus a calibrated model and weaker results for ERA5 and the Global BROOK90, it was found that the ERA5 dataset is still able to provide good results when combined with a regional and local parameterization. On the other side, the combination of a global parameterization with local and regional forcings gives still adequate, but much worse results. Furthermore, a hydrograph separation revealed that the Global BROOK90 parameterization as well as ERA5 discharge data perform weaker especially within low flow periods.</p><p>Currently, some new features are added to the original package. First, with the recent release of the ERA5 extension, historical simulations with the package now are expanded to 1950-2021 period. Additionally, an alternative climate reanalysis dataset is included in the framework (Merra-2, 0.5x0.625-degree spatial resolution, starting from 1980). A preliminary validation shows insignificant differences between both meteorological datasets with respect to the discharge based model performance.</p><p>Further upgrades of the framework will include the following core milestones: recognition of forecast and climate projections and parameter optimization features. In the nearest future we plan to utilize full power of the Climate Data Store for easy access to seasonal forecasts (i.e. ECMWF, DWD, NCEP) as well as climate projections (CMIP5) to extend the package’s scope to predict near and far future water balance components.</p>


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
Carlos Garijo ◽  
Luis Mediero

Climate model projections can be used to assess the expected behaviour of extreme precipitations in the future due to climate change. The European part of the Coordinated Regional Climate Downscalling Experiment (EURO-CORDEX) provides precipitation projections for the future under various representative concentration pathways (RCPs) through regionalised Global Climate Model (GCM) outputs by a set of Regional Climate Models (RCMs). In this work, 12 combinations of GCM and RCM under two scenarios (RCP 4.5 and RCP 8.5) supplied by the EURO-CORDEX are analysed for the Iberian Peninsula. Precipitation quantiles for a set of probabilities of non-exceedance are estimated by using the Generalized Extreme Value (GEV) distribution and L-moments. Precipitation quantiles expected in the future are compared with the precipitation quantiles in the control period for each climate model. An approach based on Monte Carlo simulations is developed in order to assess the uncertainty from the climate model projections. Expected changes in the future are compared with the sampling uncertainty in the control period. Thus, statistically significant changes are identified. The higher the significance threshold, the fewer cells with significant changes are identified. Consequently, a set of maps are obtained in order to assist the decision-making process in subsequent climate change studies.


2020 ◽  
Author(s):  
Jennifer Pirret ◽  
Fai Fung ◽  
John. F.B. Mitchell ◽  
Rachel McInnes

<p>Soil moisture is a key environmental factor for plant cultivation: too little and plant growth is restricted due to drought conditions; too much and soil becomes water-logged. It is important to understand how well climate models can represent current soil moisture processes as well as how soil moisture will respond to a changing climate, to inform adaptation of plant cultivation to future climate change. We explore current and future climate soil moisture conditions alongside water cycle processes such as evaporation and run-off in the latest UK Climate Projections (UKCP). Three model ensembles are available: UKCP Global, Regional and Local, with horizontal resolutions of 60km, 12km and 2.2km respectively. These each contain the Joint UK Land Environment Simulator (JULES) model as their land surface component. This suite of models offers the opportunity to understand the effects of parameter uncertainty and spatial resolution. Firstly, we assess the performance of the Global and Regional simulations by evaluating results from the baseline period (1981-2010) in terms of soil moisture (and the overall water balance) by comparing it to observations and to JULES driven by observations. Secondly, we assess how the water balance responds to a high future greenhouse gas concentration pathway. We find that soil moisture is likely to be lower in the summer and early autumn and spends a longer time below levels optimal for plant growth. The potential drivers of this change are explored, including future changes in precipitation and evaporation.</p>


2015 ◽  
Vol 12 (3) ◽  
pp. 2657-2706 ◽  
Author(s):  
T. Olsson ◽  
J. Jakkila ◽  
N. Veijalainen ◽  
L. Backman ◽  
J. Kaurola ◽  
...  

Abstract. Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional Climate Models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction of RCM temperature and precipitation for Finland is carried out using different versions of distribution based scaling (DBS) method. The DBS adjusted RCM data is used as input of a hydrological model to simulate changes in discharges in four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period (1961–2000) and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the SD of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly.


Author(s):  
X. L. Yang ◽  
L. L. Ren ◽  
R. Tong ◽  
Y. Liu ◽  
X. R. Cheng ◽  
...  

Abstract. Droughts are becoming the most expensive natural disasters in China and have exerted serious impacts on local economic development and ecological environment. The fifth phase of the Coupled Model Intercomparison Project (CMIP5) provides a unique opportunity to assess scientific understanding of climate variability and change over a range of historical and future period. In this study, fine-resolution multimodel climate projections over China are developed based on 7 CMIP5 climate models under RCP8.5 emissions scenarios by means of Bilinear Interpolation and Bias Correction. The results of downscaled CMIP5 models are evaluated over China by comparing the model outputs with the England Reanalysis CRU3.1 from 1951 to 2000. Accordingly, the results from the output of downscaled models are used to calculate the Standardized Precipitation Index (SPI). Time series of SPI has been used to identify drought from 20th century to 21st century over China. The results show that, most areas of China are projected to become wetter as a consequence of increasing precipitation under RCP8.5 scenarios. Detailed examination shows that the SPI show a slightly increasing trend in the future period for the most parts of China, but drought in Southwest region of China will become the norm in the future RCP8.5 scenarios.


Sign in / Sign up

Export Citation Format

Share Document