scholarly journals Improved Optimization Study of Integration Strategies in Solar Aided Coal-Fired Power Generation System

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Rongrong Zhai ◽  
Miaomiao Zhao ◽  
Chao Li ◽  
Pan Peng ◽  
Yongping Yang

Solar aided coal-fired power generation system (SACFPGS) combines solar energy and traditional coal-fired units in a particular way. This study mainly improves the solar thermal storage system. Genetic algorithm is used to optimize the SACFPGS. The best integration approach of the system, the collector area, and the corresponding thermal storage capacity to replace each high-pressure extraction are obtained when the amount of coal saving in unit solar investment per hour is at its largest. System performance before and after the improvement is compared. Results show that the improvement of the thermal storage system effectively increases the economic benefit of the integrated system.

2020 ◽  
Author(s):  
Lian Zhang ◽  
Zijian Chen ◽  
Heng Zhang ◽  
Zenghong Ma

Abstract The authors have removed this preprint from Research Square.


Author(s):  
Junjie Wu ◽  
Hongjuan Hou ◽  
Yongping Yang

With the shortage of fossil fuels and its negative effects on the environment, solar energy as one type of renewable energy has attracted increasing attention both socially and politically. There are two approached to use solar energy for generating electricity, i.e., using solar energy to directly to make work or integrating solar energy into fossil-fueled plant. The solar-aided coal-fired power generation (SACPG) mechanism is proven an effective way to use solar energy efficiently. In this paper, SACPG system and solar-alone parabolic trough CSP plant are modelled respectively. A comparison discussion related to TES system between SACPG system and solar-alone CSP plant is presented. The aim is to find what role of TES system will play in these two different systems. Through analysis, the role TES system plays varies in solar-alone power generation system and SACPG system. For solar-alone power generation system, the main function for TES system lies in storing surplus solar heat. Besides, there exists an optimum loop number with highest annual SEE with a specific TES hour. However, TES system for SACPG system not only stores the surplus solar heat, but also adjusts working condition. With the help of TES system, the working condition could be set as the high-pressure extraction steam could be totally replaced by solar heat. By doing so, annual solar power generation and annual SEE could be improved compared with that without TES system.


Author(s):  
Jerry Kumar ◽  
Nanik Ram Parhyar ◽  
Manoj Kumar Panjwani ◽  
Danish Khan

With the increasing demand for solar energy as a renewable source has brought up new challenges in the field of energy. However, one of the main advantages of photovoltaic (PV) power generation technology is that it can be directly connected to the grid power generation system and meet the demand of increasing energy consumption. Large-scale PV grid-connected power generation system put forward new challenges on the stability and control of the power grid and the grid-tied photovoltaic system with an energy storage system. To overcome these problems, the PV grid-tied system consisted of 8 kW PV array with energy storage system is designed, and in this system, the battery components can be coupled with the power grid by AC or DC mode. In addition, the feasibility and flexibility of the maximum power point tracking (MPPT) charge controller are verified through the dynamic model built in the residential solar PV system. Through the feasibility verification of the model control mode and the strategy control, the grid-connected PV system combined with reserve battery storage can effectively improve the stability of the system and reduce the cost of power generation. To analyze the performance of the grid-tied system, some real-time simulations are performed with the help of the system advisor model (SAM) that ensures the satisfactory working of the designed PV grid-tied System.


2021 ◽  
Author(s):  
Navid Ekrami

In order to investigate the feasibility of a combined heating, cooling, and power generation system in the residential sector, an integrated system was designed and installed at the Archetype Sustainable House (ASH) of the Toronto and Region Conservation Authority (TRCA). A Stirling engine based cogeneration unit was used to produce the thermal energy for a thermally driven chiller. The engine supplies hot water up to 95°C. The overall efficiency of up to 90% is determined for the cogeneration system. A thermo-chemical accumulator provided by the ClimateWell AB, was installed and connected to the cogeneration unit. The experimental coefficient of performance (COP) of this chiller during the test period was less than 0.4. Since the ClimateWell chiller rejects heat during both charging and discharging processes, a heat recovery system using three cascade tanks and an outdoor fan coil was designed and installed to utilize the waste heat, for domestic hot water production. A complete TRNSYS model of the tri-generation system was used to verify the experimental results.


2016 ◽  
Vol 78 (5-8) ◽  
Author(s):  
Noor Bazila Sharifmuddin ◽  
Tohru Suwa ◽  
Sheikh Ahmad Zaki Shaikh Salim

Complex grid systems have been gradually replaced by smaller and simpler grid systems called Microgrids. Integration of a solar thermal power generation systems into Microgrids open a new horizon of renewable energy power generation to achieve the supply and demand balance of electricity. Microgrid dispatch strategy is a control method of energy balance between power generation and electricity consumption. A thermal storage integrated into the system buffers the intermittency of solar radiation used as the heat source of the power generation system. The daily starting time for the power generation is determined by the dispatch strategy in search of minimum power from the conventional grid and maximum electricity generation from the solar thermal power generation system. In the simulation stage, the heat energy available for power generation and amount of thermal energy saved in the thermal storage is calculated at each time step using measured solar radiation data as the heat source and load profile data as the consumption required. Based on the simulation result, the power generation starting time for the next day is determined. The effectiveness of the proposed dispatch strategy is demonstrated by obtaining the best starting time and identifying minimum power requiredfrom the conventional grid. The power supply from the conventional grid is reduced by 10% by applying the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document