scholarly journals The HDAC Inhibitor Vorinostat Diminishes theIn VitroMetastatic Behavior of Osteosarcoma Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaodong Mu ◽  
Daniel Brynien ◽  
Kurt R. Weiss

Osteosarcoma (OS) is the most common primary malignancy of bone and affects patients in the first two decades of life. The greatest determinant of survival is the presence of pulmonary metastatic disease. The role of epigenetic regulation in OS, specifically the biology of metastases, is unknown. Our previous study with the murine OS cell populations K7M2 and K12 demonstrated a significant correlation of metastatic potential with the DNA methylation level of tumor suppressor genes. In the current study, we investigated if the histone deacetylase (HDAC) inhibitor, vorinostat, could regulate the metastatic potential of highly metastatic OS cells. Our results revealed that vorinostat treatment of highly metastatic K7M2 OS cells was able to greatly reduce the proliferation and metastatic potential of the cells. Morphological features related to cell motility and invasion were changed by vorinostat treatment. In addition, the gene expressions of mTOR, ALDH1, and PGC-1 were downregulated by vorinostat treatment. These data suggest that vorinostat may be an effective modulator of OS cell metastatic potential and should be studied in preclinical models of metastatic OS.

2021 ◽  
Vol 14 (7) ◽  
pp. 628
Author(s):  
Shoghag Panjarian ◽  
Jean-Pierre J. Issa

Triple-negative breast cancers (TNBCs) are very heterogenous, molecularly diverse, and are characterized by a high propensity to relapse or metastasize. Clinically, TNBC remains a diagnosis of exclusion by the lack of hormone receptors (Estrogen Receptor (ER) and Progesterone Receptor (PR)) as well as the absence of overexpression and/or amplification of HER2. DNA methylation plays an important role in breast cancer carcinogenesis and TNBCs have a distinct DNA methylation profile characterized by marked hypomethylation and lower gains of methylations compared to all other subtypes. DNA methylation is regulated by the balance of DNA methylases (DNMTs) and DNA demethylases (TETs). Here, we review the roles of TETs as context-dependent tumor-suppressor genes and/or oncogenes in solid tumors, and we discuss the current understandings of the oncogenic role of TET1 and its therapeutic implications in TNBCs.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1742-1742 ◽  
Author(s):  
Mahipal Singh ◽  
Kestas Vaitkus ◽  
Maria Hankewych ◽  
Donald Lavelle ◽  
Nadim Mahmud ◽  
...  

Abstract The role of epigenetic modifications, which represent a second layer of genetic regulation, appear to play an important role during hematopoiesis. How the chromatin structure changes from a preprogrammed hematopoietic stem cell to progressively differentiated cells and how the cell’s inner and surrounding environment affects orchestrating the epigenetic modifications is not clearly understood. This investigation was initiated to determine the pattern of DNA methylation in the γ-globin gene promoter region in the cells isolated from different stages of erythroid development in baboon (P. anubis). Baboon fetal liver hematopoietic stem progenitor cells (HSPC) were purified by passage through a Miltenyi magnetic column (to deplete mature erythroblasts) followed by flow cytometric cell sorting of erythroblast depleted cells into various sub populations depending upon the expression of CD36 antigen. Three types of cell populations i.e. CD34+CD36−, CD34+CD36+ and CD34−CD36+ were collected. Clonal analysis was performed to verify the degree of differentiation of CD34+ cells based on their co-expression of CD36. CFC assays of CD34+CD36−, CD34+CD36+ and CD34−CD36+ cells revealed a cloning efficiency of 89%, 38.5% and 12% respectively, after 12 days of culture using methylcellulose media supplemented with a cocktail of growth factors and serum. Only CD34−CD36+ cells produced detectable CFU-E colonies while CD34+CD36− and CD34+CD36+ generated mostly BFU-Es. CD34+CD36− cells produced about 2 fold more BFU-Es as compared to CD34+CD36+ cell population. Moreover, the colony size also decreased as the cells progressed towards maturation. Our data suggest that CD34+CD36−cells are most primitive erythroid progenitors while CD34−CD36+ cells are the most committed mature erythroid progenitors and the CD34+CD36+ cells represent the intermediate stage. The methylation pattern of 5 CpG sites in the γ-globin promoter region in the above purified cell populations along with erythroblast fraction was assayed using bisulfite sequencing. Two independent fetuses, 56 and 58 days post conception (dpc) were analysed. Bisulfite treated genomic DNA was used to amplify the γ-globin promoter region and the PCR products were subcloned into pCR-TOPO vector. Sequences of fifteen independent clones per sample were analysed. Our results indicated almost complete methylation of the γ-globin promoter region in earlier stages of differentiation and a progressive decrease in methylation as the cells progress towards maturation. The methylation pattern observed was 98.3%, 63.3%, 28.3% and 7.4 % in 58d fetus and 92.6%, 69.2%, 26.3% and 0.0% in 56d fetus in CD34+CD36−, CD34+CD36+, CD34−CD36+ and erythroblast cell populations respectively. Only the −54 CpG site exhibited hypomethylation in the most primitive CD34+CD36− cell population. In conclusion, our results show a progressive decrease in methylation as the HSPC mature into erythroblasts and progressively accumulate more hemoglobin indicating a direct role of DNA methylation in regulation of hemoglobin production. Status of histone methylation and acetylation along with DNA methylation pattern of ε- and β-globin gene promoters in hematopoietic progenitors at various differentiated stages should enhance our understanding of γ-globin gene regulation in a non-human primate model which closely mimics human beings.


2019 ◽  
Vol 20 (12) ◽  
pp. 3027 ◽  
Author(s):  
Nadine Vewinger ◽  
Sabrina Huprich ◽  
Larissa Seidmann ◽  
Alexandra Russo ◽  
Francesca Alt ◽  
...  

(1) Background: The high-grade neuroepithelial tumor of the central nervous system with BCOR alteration (HGNET-BCOR) is a highly malignant tumor. Preclinical models and molecular targets are urgently required for this cancer. Previous data suggest a potential role of insulin-like growth factor (IGF) signaling in HGNET-BCOR. (2) Methods: The primary HGNET-BCOR cells PhKh1 were characterized by western blot, copy number variation, and methylation analysis and by electron microscopy. The expression of IGF2 and IGF1R was assessed by qRT-PCR. The effect of chemotherapeutics and IGF1R inhibitors on PhKh1 proliferation was tested. The phosphorylation of IGF1R and downstream molecules was assessed by western blot. (3) Results: Phkh1 cells showed a DNA methylation profile compatible with the DNA methylation class “HGNET-BCOR” and morphologic features of cellular cannibalism. IGF2 and IGF1R were highly expressed by three HGNET-BCOR tumor samples and PhKh1 cells. PhKh1 cells were particularly sensitive to vincristine, vinblastine, actinomycin D (IC50 < 10 nM for all drugs), and ceritinib (IC50 = 310 nM). Ceritinib was able to abrogate the proliferation of PhKh1 cells and blocked the phosphorylation of IGF1R and AKT. (4) Conclusion: IGF1R is as an attractive target for the development of new therapy protocols for HGNET-BCOR patients, which may include ceritinib and vinblastine.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Domenica De Santis ◽  
Silvia Udali ◽  
Filippo Mazzi ◽  
Andrea Ruzzenente ◽  
Greta Beschin ◽  
...  

Abstract Objectives Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, yet mechanisms of hepatocarcinogenesis are largely unknown. A particular interest was recently dedicated to the role of trace elements and metallothioneins (MTs), a group of proteins involved in metal ions homeostasis and detoxification, have been suggested as possible tumor suppressor genes. The study of MTs transcriptional regulation by promoter DNA methylation is the object of study as a possible mechanism responsible for gene silencing through epigenetics. Methods Twenty-seven HCC patients undergoing surgery intervention were enrolled and clinically characterized. MT1G and MT1H gene expression was performed by Real Time qPCR. DNA methylation analysis in 23 HCC and homologous non-neoplastic liver tissue (N) was performed by Bisulfite-Amplicon Sequencing (BSAS) in an overlapping region (∼400 bp) of the promoters of the two genes. Cu and Zn concentrations were measured in serum and liver tissues (HCC and N) by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Kaplan-Meier analysis of survival was performed according to serum trace elements. Results MT1G and MT1H were transcriptionally repressed in HCC tissue as compared to N. A correlation was observed between the mRNA levels of the two MTs, in particular MT1G was repressed in 23 out of 27 HCC tissue (P = 0.0366) and MT1H was repressed in 24 out of 27 HCC tissue (P = 0.0077). The promoter region resulted hypermethylated in 9 out of 19 HCC that showed MT1G and MT1H down-regulation. Serum Zn and Cu levels were within the normal range while HCC tissue exhibited significantly reduced Zn levels as compared to N (P < 0.0001). Tissue Cu levels did not show significant differences. Serum trace elements levels were also analyzed according to patients clinical features and those with Cu levels higher than the 75th percentile had a significantly poorer prognosis than those within the lowest Cu levels quartile (P < 0.05). Conclusions MT1G and MT1H are repressed in HCC tissue. In a subset of patients the downregulation was associated to promoter hypermethylation, supporting the hypothesis of MT1G and MT1H as possible tumor suppressor genes in HCC. Evidence of a correlation between serum Cu levels and survival rate provide new insights for the role of this microelement in liver carcinogenesis. Funding Sources No funding sources.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


2020 ◽  
pp. 1-10
Author(s):  
Louise Stögbauer ◽  
Christian Thomas ◽  
Andrea Wagner ◽  
Nils Warneke ◽  
Eva Christine Bunk ◽  
...  

OBJECTIVEChemotherapeutic options for meningiomas refractory to surgery or irradiation are largely unknown. Human telomerase reverse transcriptase (hTERT) promoter methylation with subsequent TERT expression and telomerase activity, key features in oncogenesis, are found in most high-grade meningiomas. Therefore, the authors investigated the impact of the demethylating agent decitabine (5-aza-2ʹ-deoxycytidine) on survival and DNA methylation in meningioma cells.METHODShTERT promoter methylation, telomerase activity, TERT expression, and cell viability and proliferation were investigated prior to and after incubation with decitabine in two benign (HBL-52 and Ben-Men 1) and one malignant (IOMM-Lee) meningioma cell line. The global effects of decitabine on DNA methylation were additionally explored with DNA methylation profiling.RESULTSHigh levels of TERT expression, telomerase activity, and hTERT promoter methylation were found in IOMM-Lee and Ben-Men 1 but not in HBL-52 cells. Decitabine induced a dose-dependent significant decrease of proliferation and viability after incubation with doses from 1 to 10 μM in IOMM-Lee but not in HBL-52 or Ben-Men 1 cells. However, effects in IOMM-Lee cells were not related to TERT expression, telomerase activity, or hTERT promoter methylation. Genome-wide methylation analyses revealed distinct demethylation of 14 DNA regions after drug administration in the decitabine-sensitive IOMM-Lee but not in the decitabine-resistant HBL-52 cells. Differentially methylated regions covered promoter regions of 11 genes, including several oncogenes and tumor suppressor genes that to the authors’ knowledge have not yet been described in meningiomas.CONCLUSIONSDecitabine decreases proliferation and viability in high-grade but not in benign meningioma cell lines. The effects of decitabine are TERT independent but related to DNA methylation changes of promoters of distinct tumor suppressor genes and oncogenes.


Sign in / Sign up

Export Citation Format

Share Document