scholarly journals Alzheimer’s Pathogenesis and Its Link to the Mitochondrion

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
C. Simoncini ◽  
D. Orsucci ◽  
E. Caldarazzo Ienco ◽  
G. Siciliano ◽  
U. Bonuccelli ◽  
...  

Alzheimer’s disease (AD) is the most common form of dementia in the elderly. This neurodegenerative disorder is clinically characterized by impairment of cognitive functions and changes in behaviour and personality. The pathogenesis of AD is still unclear. Recent evidence supports some role of mitochondria dysfunction and oxidative stress in the development of the neurodegenerative process. In this review, we discuss the role of mitochondrial dysfunction in AD, focusing on the mechanisms that lead to mitochondrial impairment, oxidative stress, and neurodegeneration, a “vicious circle” that ends in dementia.

Author(s):  
V Nuthan Kumar Babu ◽  
Navneet Khurana

Parkinson’s disease (PD) is the common physical movement disorder, and it is 2nd most progressive widespread neurodegenerative disorder all over the world, and it is reported that and essential 10 million, over 0.3 % of the total world population. A thoughtful reduction of the neurotransmitter dopamine (DA) in the striatum is the main cause of these motor symptoms, collectively known as parkinsonism. Mitochondria serves as most important organelle in most of the cells and are essential for life and it is also called as heart for all cellular metabolisms. The main and most important role of mitochondria is generation of ATP via oxidative phosphorylation. In this study will study about how complex Ⅰ deficiency effects the mitochondrial and oxidative stress and reactive oxygen species which cause mitochondrial dysfunction and we also study emerging therapies for Parkinson disease with the help of coenzyme Q10 and some genes like FUN-14, FUNDC-1 and dimethyl fumarate or BG-12 in some phases of clinical trials and also by cell transplantation therapy and in future this study helps in finding how this sporadic Parkinson disease occurs in parkinsonism.


Author(s):  
Linlin Zhang ◽  
Aurelio Reyes ◽  
Xiangdong Wang

Abstract: The discovery of charged molecules being able to cross the mitochondrial membrane has prompted many scholars to exploit this idea to find a way of preventing or slowing down aging. In this paper, we will focus on mitochondriatargeted antioxidants, which are cationic derivatives of plastoquinone, and in particular on the mitochondria-targeted antioxidant therapy of neurodegenerative diseases. It is well known that the accumulation of amyloid-β peptide (Aβ) in mitochondria and its related mitochondrial dysfunction are critical signatures of Alzheimer’ s disease (AD). In another neurodegenerative disease, Parkinson’s disease (PD), the loss of dopaminergic neurons in the substantia nigra and the production of Lewy bodies are among their pathological features. Pathogenesis of Parkinson’s disease and Alzheimer’s disease has been frequently linked to mitochondrial dysfunction and oxidative stress. Recent studies show that MitoQ, a mitochondria-targeted antioxidant, may possess therapeutic potential for Aβ-related and oxidative stress-associated neurodegenerative diseases, especially AD. Although MitoQ has been developed to the stage of clinical trials in PD, its true clinical effect still need further verification. This review aims to discuss the role of mitochondrial pathology in neurodegenerative diseases, as well as the recent development of mitochondrial targeted antioxidants as a potential treatment for these diseases by removing excess oxygen free radicals and inhibiting lipid peroxidation in order to improve mitochondrial function.  


2019 ◽  
Vol 316 ◽  
pp. 60-72 ◽  
Author(s):  
Mohammad Mehdi Ommati ◽  
Omid Farshad ◽  
Hossein Niknahad ◽  
Mohammad Reza Arabnezhad ◽  
Negar Azarpira ◽  
...  

Physiology ◽  
2018 ◽  
Vol 33 (5) ◽  
pp. 348-359 ◽  
Author(s):  
Cetewayo S. Rashid ◽  
Amita Bansal ◽  
Rebecca A. Simmons

Intrauterine growth restriction (IUGR) leads to reduced birth weight and the development of metabolic diseases such as Type 2 diabetes in adulthood. Mitochondria dysfunction and oxidative stress are commonly found in key tissues (pancreatic islets, liver, and skeletal muscle) of IUGR individuals. In this review, we explore the role of oxidative stress in IUGR-associated diabetes etiology.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Carlos Clayton Torres Aguiar ◽  
Anália Barbosa Almeida ◽  
Paulo Victor Pontes Araújo ◽  
Rita Neuma Dantas Cavalcante de Abreu ◽  
Edna Maria Camelo Chaves ◽  
...  

Backgrounds. The production of free radicals has a role in the regulation of biological function, cellular damage, and the pathogenesis of central nervous system conditions. Epilepsy is a highly prevalent serious brain disorder, and oxidative stress is regarded as a possible mechanism involved in epileptogenesis. Experimental studies suggest that oxidative stress is a contributing factor to the onset and evolution of epilepsy.Objective. A review was conducted to investigate the link between oxidative stress and seizures, and oxidative stress and age as risk factors for epilepsy. The role of oxidative stress in seizure induction and propagation is also discussed.Results/Conclusions. Oxidative stress and mitochondrial dysfunction are involved in neuronal death and seizures. There is evidence that suggests that antioxidant therapy may reduce lesions induced by oxidative free radicals in some animal seizure models. Studies have demonstrated that mitochondrial dysfunction is associated with chronic oxidative stress and may have an essential role in the epileptogenesis process; however, few studies have shown an established link between oxidative stress, seizures, and age.


2014 ◽  
Vol 89 (4) ◽  
pp. 545-556 ◽  
Author(s):  
Giovanni Quarato ◽  
Rosella Scrima ◽  
Maria Ripoli ◽  
Francesca Agriesti ◽  
Darius Moradpour ◽  
...  

2020 ◽  
Author(s):  
Bailey Balouch ◽  
Halle Nagorsky ◽  
Truc Pham ◽  
Thai LaGraff ◽  
Quynh Chu-LaGraff

AbstractInfantile Neuronal Ceroid Lipofuscinosis (INCL) is a pediatric neurodegenerative disorder characterized by progressive retinal and central nervous system deterioration during infancy. This lysosomal storage disorder results from a deficiency in the Palmitoyl Protein Thioesterase 1 (PPT1) enzyme - a lysosomal hydrolase which cleaves fatty acid chains such as palmitate from lipid-modified proteins. In the absence of PPT1 activity, these proteins fail to be degraded, leading to the accumulation of autofluorescence storage material in the lysosome. The underlying molecular mechanisms leading to INCL pathology remain poorly understood. A role for oxidative stress has been postulated, yet little evidence has been reported to support this possibility. Here we present a comprehensive cellular characterization of human PPT1-deficient fibroblast cells harboring Met1Ile and Tyr247His compound heterozygous mutations. We detected autofluorescence storage material and observed distinct organellar abnormalities of the lysosomal and mitochondrial structures, which supported previous postulations about the role of ER, mitochondria and oxidative stress in INCL. An increase in the number of lysosomal structures was found in INCL patient fibroblasts, which suggested an upregulation of lysosomal biogenesis, and an association with endoplasmic reticulum stress response. The mitochondrial network also displayed abnormal spherical punctate morphology instead of normal elongated tubules with extensive branching, supporting the involvement of mitochondrial and oxidative stress in INCL cell death. Autofluorescence accumulation and lysosomal pathologies can be mitigated in the presence of conditioned wild type media suggesting that a partial restoration via passive introduction of the enzyme into the cellular environment may be possible. We also demonstrated, for the first time, that human INCL fibroblasts have a heightened susceptibility to exogenous reactive oxygen species (ROS)-induced cell death, which suggested an elevated basal level of endogenous ROS in the mutant cell. Collectively, these findings support the role of intracellular organellar networks in INCL pathology, possibly due to oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document