scholarly journals Identity Recognition Using Biological Electroencephalogram Sensors

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Liang ◽  
Liang Cheng ◽  
Mingdong Tang

Brain wave signal is a bioelectric phenomenon reflecting activities in human brain. In this paper, we firstly introduce brain wave-based identity recognition techniques and the state-of-the-art work. We then analyze important features of brain wave and present challenges confronted by its applications. Further, we evaluate the security and practicality of using brain wave in identity recognition and anticounterfeiting authentication and describe use cases of several machine learning methods in brain wave signal processing. Afterwards, we survey the critical issues of characteristic extraction, classification, and selection involved in brain wave signal processing. Finally, we propose several brain wave-based identity recognition techniques for further studies and conclude this paper.

2021 ◽  
Vol 68 ◽  
pp. 102577
Author(s):  
Yang Zhou ◽  
Chaoyang Chen ◽  
Mark Cheng ◽  
Yousef Alshahrani ◽  
Sreten Franovic ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 603
Author(s):  
Chunlei Shi ◽  
Xianwei Xin ◽  
Jiacai Zhang

Machine learning methods are widely used in autism spectrum disorder (ASD) diagnosis. Due to the lack of labelled ASD data, multisite data are often pooled together to expand the sample size. However, the heterogeneity that exists among different sites leads to the degeneration of machine learning models. Herein, the three-way decision theory was introduced into unsupervised domain adaptation in the first time, and applied to optimize the pseudolabel of the target domain/site from functional magnetic resonance imaging (fMRI) features related to ASD patients. The experimental results using multisite fMRI data show that our method not only narrows the gap of the sample distribution among domains but is also superior to the state-of-the-art domain adaptation methods in ASD recognition. Specifically, the ASD recognition accuracy of the proposed method is improved on all the six tasks, by 70.80%, 75.41%, 69.91%, 72.13%, 71.01% and 68.85%, respectively, compared with the existing methods.


Author(s):  
Minsik Oh ◽  
Sungjoon Park ◽  
Sun Kim ◽  
Heejoon Chae

Abstract Gene expressions are subtly regulated by quantifiable measures of genetic molecules such as interaction with other genes, methylation, mutations, transcription factor and histone modifications. Integrative analysis of multi-omics data can help scientists understand the condition or patient-specific gene regulation mechanisms. However, analysis of multi-omics data is challenging since it requires not only the analysis of multiple omics data sets but also mining complex relations among different genetic molecules by using state-of-the-art machine learning methods. In addition, analysis of multi-omics data needs quite large computing infrastructure. Moreover, interpretation of the analysis results requires collaboration among many scientists, often requiring reperforming analysis from different perspectives. Many of the aforementioned technical issues can be nicely handled when machine learning tools are deployed on the cloud. In this survey article, we first survey machine learning methods that can be used for gene regulation study, and we categorize them according to five different goals: gene regulatory subnetwork discovery, disease subtype analysis, survival analysis, clinical prediction and visualization. We also summarize the methods in terms of multi-omics input types. Then, we explain why the cloud is potentially a good solution for the analysis of multi-omics data, followed by a survey of two state-of-the-art cloud systems, Galaxy and BioVLAB. Finally, we discuss important issues when the cloud is used for the analysis of multi-omics data for the gene regulation study.


2021 ◽  
Author(s):  
Andreas Sepp

Artificial intelligence and machine learning methods had significant contribution to the advancement and progress of predictive analytics. This article presents a state of the art of methods and applications of artificial intelligence and machine learning.


2021 ◽  
Author(s):  
Maria Papadogiorgaki ◽  
Maria Venianaki ◽  
Paulos Charonyktakis ◽  
Marios Antonakakis ◽  
Ioannis Tsamardinos ◽  
...  

2022 ◽  
Vol 3 (2) ◽  
pp. 1-22
Author(s):  
Ye Gao ◽  
Asif Salekin ◽  
Kristina Gordon ◽  
Karen Rose ◽  
Hongning Wang ◽  
...  

The rapid development of machine learning on acoustic signal processing has resulted in many solutions for detecting emotions from speech. Early works were developed for clean and acted speech and for a fixed set of emotions. Importantly, the datasets and solutions assumed that a person only exhibited one of these emotions. More recent work has continually been adding realism to emotion detection by considering issues such as reverberation, de-amplification, and background noise, but often considering one dataset at a time, and also assuming all emotions are accounted for in the model. We significantly improve realistic considerations for emotion detection by (i) more comprehensively assessing different situations by combining the five common publicly available datasets as one and enhancing the new dataset with data augmentation that considers reverberation and de-amplification, (ii) incorporating 11 typical home noises into the acoustics, and (iii) considering that in real situations a person may be exhibiting many emotions that are not currently of interest and they should not have to fit into a pre-fixed category nor be improperly labeled. Our novel solution combines CNN with out-of-data distribution detection. Our solution increases the situations where emotions can be effectively detected and outperforms a state-of-the-art baseline.


2011 ◽  
Vol 8 (2) ◽  
pp. 025002 ◽  
Author(s):  
Dean J Krusienski ◽  
Moritz Grosse-Wentrup ◽  
Ferran Galán ◽  
Damien Coyle ◽  
Kai J Miller ◽  
...  

2018 ◽  
Vol 9 (24) ◽  
pp. 5441-5451 ◽  
Author(s):  
Andreas Mayr ◽  
Günter Klambauer ◽  
Thomas Unterthiner ◽  
Marvin Steijaert ◽  
Jörg K. Wegner ◽  
...  

The to date largest comparative study of nine state-of-the-art drug target prediction methods finds that deep learning outperforms all other competitors. The results are based on a benchmark of 1300 assays and half a million compounds.


2018 ◽  
Vol 8 (10) ◽  
pp. 1927 ◽  
Author(s):  
Zuzana Dankovičová ◽  
Dávid Sovák ◽  
Peter Drotár ◽  
Liberios Vokorokos

This paper addresses the processing of speech data and their utilization in a decision support system. The main aim of this work is to utilize machine learning methods to recognize pathological speech, particularly dysphonia. We extracted 1560 speech features and used these to train the classification model. As classifiers, three state-of-the-art methods were used: K-nearest neighbors, random forests, and support vector machine. We analyzed the performance of classifiers with and without gender taken into account. The experimental results showed that it is possible to recognize pathological speech with as high as a 91.3% classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document