scholarly journals Macerals of Shengli Lignite in Inner Mongolia of China and Their Combustion Reactivity

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ying Yue Teng ◽  
Yu Zhe Liu ◽  
Quan Sheng Liu ◽  
Chang Qing Li

The macerals, including fusinitic coal containing 72.20% inertinite and xyloid coal containing 91.43% huminite, were separated from Shengli lignite using an optical microscope, and their combustion reactivity was examined by thermogravimetric analysis. Several combustion parameters, including ignition and burnout indices, were analyzed, and the combustion kinetics of the samples were calculated by regression. Fusinitic coal presented a porous structure, while xyloid coal presented a compact structure. The specific surface area of fusinitic coal was 2.5 times larger than that of xyloid coal, and the light-off temperature of the former was higher than that of the latter. However, the overall combustion reactivity of fusinitic coal was better than that of xyloid coal. The combustion processes of fusinitic and xyloid coals can be accurately described by both the homogeneous model and the shrinking core model. The features of xyloid coal agree with the shrinking core model when its conversion rate is 10%–90%. The activation energy of fusinitic coal during combustion can be divided into three phases, with the middle phase featuring the highest energy. The activation energy of xyloid coal is lower than that of fusinitic coal in the light-off phase, which may explain the low light-off temperature of this coal.

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 812
Author(s):  
Kirill Karimov ◽  
Andrei Shoppert ◽  
Denis Rogozhnikov ◽  
Evgeniy Kuzas ◽  
Semen Zakhar’yan ◽  
...  

Ammonia leaching is a promising method for processing low-grade copper ores, especially those containing large amounts of oxidized copper. In this paper, we study the effect of Si-containing minerals on the kinetics of Cu and Ag leaching from low-grade copper concentrates. The results of experiments on the pressure leaching of the initial copper concentrate in an ammonium/ammonium-carbonate solution with oxygen as an oxidizing agent are in good agreement with the shrinking core model in the intra-diffusion mode: in this case, the activation energies were 53.50 kJ/mol for Cu and 90.35 kJ/mol for Ag. Energy-dispersive X-ray spectroscopy analysis (EDX) analysis showed that reagent diffusion to Cu-bearing minerals can be limited by aluminosilicate minerals of the gangue. The recovery rate for copper and silver increases significantly after a preliminary alkaline desilication of the concentrate, and the new shrinking core model is the most adequate, showing that the process is limited by diffusion through the product layer and interfacial diffusion. The activation energy of the process increases to 86.76 kJ/mol for Cu and 92.15 kJ/mol for Ag. Using the time-to-a-given-fraction method, it has been shown that a high activation energy is required in the later stages of the process, when the most resistant sulfide minerals of copper and silver apparently remain.


2006 ◽  
Vol 101 (6) ◽  
pp. 3659-3665 ◽  
Author(s):  
Brian Boyars ◽  
Eric S. Daniels ◽  
Andrew Klein

1998 ◽  
Vol 37 (2) ◽  
pp. 336-340 ◽  
Author(s):  
Toshiaki Yoshioka ◽  
Nobuchika Okayama ◽  
Akitsugu Okuwaki

2004 ◽  
Vol 71 (3-4) ◽  
pp. 435-446 ◽  
Author(s):  
A Mgaidi ◽  
F Jendoubi ◽  
D Oulahna ◽  
M El Maaoui ◽  
J.A Dodds

2015 ◽  
Vol 69 (9) ◽  
Author(s):  
Ying-Bo Mao ◽  
Jiu-Shuai Deng ◽  
Shu-Ming Wen ◽  
Jian-Jun Fang

AbstractThe dissolution of malachite particles in ammonium carbamate (AC) solutions was investigated in a batch reactor, using the parameters of temperature, AC concentration, particle size, and stirring speed. The shrinking core model was evaluated for the dissolution rate increased by decreasing particle size and increasing the temperature and AC concentration. No important effect was observed for variations in stirring speed. Dissolution curves were evaluated in order to test shrinking core models for fluid-solid systems. The dissolution rate was determined as being controlled by surface chemical reaction. The activation energy of the leaching process was determined as 46.04 kJ mol


Sign in / Sign up

Export Citation Format

Share Document