scholarly journals Spectrum and theIn VitroAntifungal Susceptibility Pattern of Yeast Isolates in Ethiopian HIV Patients with Oropharyngeal Candidiasis

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Birhan Moges ◽  
Adane Bitew ◽  
Aster Shewaamare

Background.In Ethiopia, little is known regarding the distribution and thein vitroantifungal susceptibility profile of yeasts.Objective.This study was undertaken to determine the spectrum and thein vitroantifungal susceptibility pattern of yeasts isolated from HIV infected patients with OPC.Method.Oral pharyngeal swabs taken from oral lesions of study subjects were inoculated onto Sabouraud Dextrose Agar. Yeasts were identified by employing conventional test procedures and the susceptibility of yeasts to antifungal agents was evaluated by disk diffusion assay method.Result.One hundred and fifty-five yeast isolates were recovered of which 91 isolates were from patients that were not under HAART and 64 were from patients that were under HAART.C. albicanswas the most frequently isolated species followed byC. glabrata, C. tropicalis, C. krusei, C. kefyr, Cryptococcus laurentii, and Rhodotorulaspecies. Irrespective of yeasts isolated and identified, 5.8%, 5.8%, 12.3%, 8.4%, 0.6%, and 1.3% of the isolates were resistant to amphotericin B, clotrimazole, fluconazole, ketoconazole, miconazole, and nystatin, respectively.Conclusion.Yeast colonization rate of 69.2% and 31% resistance to six antifungal agents was documented. These highlight the need for nationwide study on the epidemiology of OPC and resistance to antifungal drugs.

2021 ◽  
Vol 7 (3) ◽  
pp. 232-236
Author(s):  
Siddharth Sethi ◽  
Ujjwal Kumar ◽  
Krishnendra Varma ◽  
Yogyata Marothi ◽  
Mahendra Pratap Singh Chouhan

Dermatophytes are fungi that can cause infections of the skin, hair & nails due to their ability to invade keratin. Dermatophytosis is the most common superficial fungal infection worldwide; it is common in tropics and subtropical regions. It may present in epidemic proportions in areas of high humidity: The present study aimed to identify various species causing dermatophytosis & to determine the invitro susceptibility pattern against commonly used systemic antifungal agents in our tertiary care center. A total of 149 samples were collected of infected skin, hair and nails in a period of 1 year from January 2020 to December 2020. Samples were collected under aseptic condition by skin scrapping, nail and hair clipping by using scalpel or forceps. Identification of the causative pathogen was done by performing slide culture, lacto-phenol cotton blue mount, hair perforation tests and urease tests. We adopted a newly developed agar based disk diffusion assay to test susceptibility of clinically isolated dermatophytes for antifungal susceptibility testing. Microbiological investigations revealed the presence of dermatophytic fungi in 71.8% of the samples. Trichophyton rubrum was the predominant pathogen isolated. The study showed Itraconazole to be most effective antifungal drugs against dermatophytes followed by terbinafine and fluconazole.Further intensive epidemiological and invitro antifungal susceptibility studies of dermatophytes are required which will have more public health significance.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Shuwen Deng ◽  
Saham Ansari ◽  
Macit Ilkit ◽  
Haleh Rafati ◽  
Mohammad T. Hedayati ◽  
...  

ABSTRACT Trichophyton schoenleinii is an anthropophilic dermatophyte mainly causing tinea favosa of the scalp in certain regions of the world, especially Africa and Asia. We investigated the in vitro susceptibilities of 55 T. schoenleinii isolates collected over the last 30 years from Iran, Turkey, and China to 12 antifungals using the CLSI broth microdilution method. Our results revealed that terbinafine and ketoconazole were the most potent antifungal agents among those tested, independently of the geographic regions where strains were isolated.


2020 ◽  
Vol 13 (8) ◽  
Author(s):  
Hristina Yotova Hitkova ◽  
Diana Simeonova Georgieva ◽  
Preslava Mihailova Hristova ◽  
Teodora Vasileva Marinova-Bulgaranova ◽  
Biser Kirilov Borisov ◽  
...  

Background: Emerging non-albicans Candida (NAC) species are a major threat because of their intrinsic or acquired resistance to routinely applied antifungal agents. Objectives: The purpose of our study was to reveal in vitro activity of nine antifungal agents against NAC isolates. Methods: A total of 67 NAC (27 Candida glabrata, 10 C. tropicalis, 6 C. krusei, 6 C. parapsilosis, 4 C. lusitaniae, 4 C. lipolytica, etc.) were identified and tested. The antifungal susceptibility was estimated on the basis of minimum inhibitory concentrations (MIC). Results: Overall, 13 species were determined, of which C. glabrata was the most common (40.3%), followed by C. tropicalis (14.9%), C. krusei, and C. parapsilosis (8.9 % each). Forty-nine NAC isolates (73.13%) demonstrated decreased susceptibility to one or more antifungals, and 18 of them were resistant to all azoles. Out of 27 C. glabrata, 12 (44.4%) were resistant to fluconazole with MICs: 32 - >128 µg/mL and 15 (55.6%) were intermediate with MICs: 8 - 16 µg/mL Non-albicans Candida revealed a good susceptibility to echinocandins. Amphotericin B resistance was found in 5.97% of the isolates. Of particular interest was the detection of 6 (8.95%) multidrug-resistant NAC, which expressed resistance to azoles and echinocandins and/or amphotericin B. Conclusions: About one-fourth of the studied NAC were resistant to all azoles. These findings as well as the detection of several multidrug-resistant isolates determine the necessity of susceptibility testing of clinically important yeast isolates and control of the antifungal drugs in our hospital.


Author(s):  
Narges Aslani ◽  
Tahereh Shokohi ◽  
Mohammad Reza Ataollahi ◽  
Saham Ansari ◽  
Yousef Gholampour ◽  
...  

Background and Purpose: Incidence of fungal infections caused by opportunistic fungal pathogens, such as yeasts and yeast-like species, has undergone an increase in otherwise healthy individuals. These pathogens account for high mortality and show reduced susceptibility to the routine antifungal drugs. Accordingly, antifungal susceptibility testing is an urgent need in the determination of the susceptibility spectrum of antifungals and selection of appropriate antifungal agents for the management of patients with fungal infection.Materials and Methods: The present study was conducted on 110 yeast strains belonging to 15 species recovered from clinical specimens. Susceptibility of the isolates to four antifungal drugs (i.e., fluconazole, itraconazole, voriconazole, and posaconazole) was tested according to the Clinical and Laboratory Standards Institute guidelines M27-A3 and M27-S4.Results: Fluconazole exhibited no activity against 4.3% (n=2) of C. albicans isolates, whereas the remaining 44 isolates had a minimum inhibitory concentration (MIC) range of 0.125-4 μg/ml. Voriconazole had the lowest geometric mean MIC (0.03 μg/ml) against all isolated yeast species, followed by posaconazole (0.07 μg/ml), itraconazole (0.10 μg/ml), and fluconazole (0.60 μg/ml). Overall, all of the isolates had reduced voriconazole MICs with a MIC range of 0.016-0.5 μg/ml, except for one isolate of C. albicans that had a MIC of 1 μg/ml. Candida haemulonii as a multidrug-resistant fungus showed a fluconazole MIC of > 64 μg/ml.Conclusion: The current study provides insight into the antifungal susceptibility profiles of clinically common and uncommon yeast species to four triazole antifungal agents. According to our findings, voriconazole was the most active agent. Awareness about antifungal susceptibility patterns is highly helpful in the selection of appropriate antifungal drugs and identification of the efficiency of the currently used agents.


2019 ◽  
Vol 16 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohd Sajjad Ahmad Khan ◽  
Iqbal Ahmad ◽  
Abdullah Safar Althubiani

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections. Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity. Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.


2017 ◽  
Vol 6 (05) ◽  
pp. 5379
Author(s):  
Vanathi Sabtharishi* ◽  
Radhika Katragadda ◽  
Thyagarajan Ravinder

Recent years, due to increased usage of antifungal treatment worldwide, there is an increased chance of rising resistance among antifungal drugs too. Dermatophytic infections causes’ superficial mycosis and it affects skin, hair and nail. These infections are more common and antifungal drugs are used everywhere to treat those common infections. To conduct a study by determining the antifungal susceptibility pattern in dermatophytic isolates from patients attending dermatology OPD in a tertiary care hospital. A total of 217 samples like hair, nail and skin scrapings were obtained and isolation of dermatophytes was done. Antifungal susceptibility testing for dermatophytes was performed by micro broth dilution method. Antifungal drugs tested were Griseofulvin, Fluconazole, Itraconazole and Ketoconazole. Minimum inhibitory concentration for each drug for fungal isolates was tested and results studied. Fluconazole showed a higher MIC values in the range of 1-8µg/ml. Itraconazole showed the lowest MIC values by micro broth dilution method. Since there is limitation of standard guidelines and protocol, meticulous research must be conducted on effect of antifungals and derive at universally implementable guidelines.


2004 ◽  
Vol 48 (9) ◽  
pp. 3317-3322 ◽  
Author(s):  
Francesco Barchiesi ◽  
Elisabetta Spreghini ◽  
Monia Maracci ◽  
Annette W. Fothergill ◽  
Isabella Baldassarri ◽  
...  

ABSTRACT Candida glabrata has recently emerged as a significant pathogen involved in both superficial and deep-seated infections. In the present study, a checkerboard broth microdilution method was performed to investigate the in vitro activities of voriconazole (VOR) in combination with terbinafine (TRB), amphotericin B (AMB), and flucytosine (5FC) against 20 clinical isolates of C. glabrata. Synergy, defined as a fractional inhibitory concentration (FIC) index of ≤0.50, was observed in 75% of VOR-TRB, 10% of VOR-AMB, and 5% of VOR-5FC interactions. None of these combinations yielded antagonistic interactions (FIC index > 4). When synergy was not achieved, there was still a decrease in the MIC of one or both drugs used in the combination. In particular, the MICs were reduced to ≤1.0 μg/ml as a result of the combination for all isolates for which the AMB MIC at the baseline was ≥2.0 μg/ml. By a disk diffusion assay, the halo diameters produced by antifungal agents in combination were greater that those produced by each drug alone. Finally, killing curves showed that VOR-AMB exhibited synergistic interactions, while VOR-5FC sustained fungicidal activities against C. glabrata. These studies demonstrate that the in vitro activity of VOR against this important yeast pathogen can be enhanced upon combination with other drugs that have different modes of action or that target a different step in the ergosterol pathway. Further studies are warranted to elucidate the potential beneficial effects of such combination regimens in vivo.


2015 ◽  
Vol 59 (6) ◽  
pp. 3675-3682 ◽  
Author(s):  
B. Risslegger ◽  
C. Lass-Flörl ◽  
G. Blum ◽  
M. Lackner

ABSTRACTFor antifungal susceptibility testing of nonsporulating or poorly sporulating dermatophytes, a fragmented-mycelium inoculum preparation method was established and compared to broth microdilution testing according to CLSI and EUCAST guidelines. Moreover, thein vitroactivity of new antifungal agents against dermatophytes was evaluated. Agreement between the mycelial inoculum method and the CLSI broth microdilution method was high (93% to 100%). Echinocandins (minimal effective concentration [MEC], ≤0.5 mg/liter) and posaconazole (MIC, ≤3.00 mg/liter) showed good activity against all tested dermatophytes.


2016 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Sultana Razia ◽  
Shahida Anwar ◽  
Md. Ruhul Amin Miah ◽  
Najmun Nahar ◽  
Ripon Barua

<p><strong>Background:</strong> With increasing fungal disease many newer antifungal drugs are available with different spectrum of activ­ity. Antifungal susceptibility test will help clinicians for selection of effective drug and thereby treatment of patient.<strong> </strong></p><p><strong>Objective:</strong> The study was undertaken to perform a simple screening drug susceptibility test of T. rnbrum by Semi Solid Agar Antifungal Susceptibility (SAAS) <strong></strong></p><p><strong>Method:</strong> Perfonnance of susceptibility method was assessed by comparing the MICs of three commonly prescribed antifungal agents namely- tluconazole (FCZ), itraconazole (ITZ) and terbinafine (TER) to the CLSI (Clinical and Laboratory Standard Institute) recommended M-38, a broth microdilution method. <strong></strong></p><p><strong>Results:</strong> In SAAS method, among twenty nine T. rubrum, twenty five (86.2%) were susceptible (MIC range 0.5-64 µg/ml) to Fluconazole (FCZ) and four (13.7%) were resistant (MIC value &gt;64 µg/ml). In broth microdilution method, among twenty nine T. rubrum, twenty six (89.6%) were susceptible (MIC range 0.3-64 µg/ml) to FCZ and three (10.3%) were resistant (MIC value &gt;64 µg/ml). In case of both ITZ and TER, all were susceptible (MIC range 0.3-64 µg/ml) to both methods. The SAAS method demonstrated the susceptibility pattern of T. rubrum against FCZ, ITZ and TER usually within 72 to 96 hours after organism isolation and results were concordance with the results of CLSI broth microdilution method. <strong></strong></p><p><strong>Conclusion:</strong> Though it is a newer method with proper standardization of the test method, SAAS method is simple and easily applicable screening method for susceptibility testing of antifungal agents against dermatophytes in any microbiology laboratories.</p>


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Cristina Lazzarini ◽  
Krupanandan Haranahalli ◽  
Robert Rieger ◽  
Hari Krishna Ananthula ◽  
Pankaj B. Desai ◽  
...  

ABSTRACTThe incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active againstCryptococcus neoformansin vitroand had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.


Sign in / Sign up

Export Citation Format

Share Document