scholarly journals Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Marc Chevalier ◽  
Rafaël De Sa ◽  
Laura Cardoit ◽  
Muriel Thoby-Brisson

Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature) affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo.

1999 ◽  
Vol 79 (2) ◽  
pp. 325-360 ◽  
Author(s):  
Gérard Hilaire ◽  
Bernard Duron

In this review, the maturational changes occurring in the mammalian respiratory network from fetal to adult ages are analyzed. Most of the data presented were obtained on rodents using in vitro approaches. In gestational day 18 (E18) fetuses, this network functions but is not yet able to sustain a stable respiratory activity, and most of the neonatal modulatory processes are not yet efficient. Respiratory motoneurons undergo relatively little cell death, and even if not yet fully mature at E18, they are capable of firing sustained bursts of potentials. Endogenous serotonin exerts a potent facilitation on the network and appears to be necessary for the respiratory rhythm to be expressed. In E20 fetuses and neonates, the respiratory activity has become quite stable. Inhibitory processes are not yet necessary for respiratory rhythmogenesis, and the rostral ventrolateral medulla (RVLM) contains inspiratory bursting pacemaker neurons that seem to constitute the kernel of the network. The activity of the network depends on CO2 and pH levels, via cholinergic relays, as well as being modulated at both the RVLM and motoneuronal levels by endogenous serotonin, substance P, and catecholamine mechanisms. In adults, the inhibitory processes become more important, but the RVLM is still a crucial area. The neonatal modulatory processes are likely to continue during adulthood, but they are difficult to investigate in vivo. In conclusion, 1) serotonin, which greatly facilitates the activity of the respiratory network at all developmental ages, may at least partly define its maturation; 2) the RVLM bursting pacemaker neurons may be the kernel of the network from E20 to adulthood, but their existence and their role in vivo need to be further confirmed in both neonatal and adult mammals.


2001 ◽  
Vol 86 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Muriel Thoby-Brisson ◽  
Jan-Marino Ramirez

In the respiratory network of mice, we characterized with the whole cell patch-clamp technique pacemaker properties in neurons discharging in phase with inspiration. The respiratory network was isolated in a transverse brain stem slice containing the pre-Bötzinger complex (PBC), the presumed site for respiratory rhythm generation. After blockade of respiratory network activity with 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), 18 of 52 inspiratory neurons exhibited endogenous pacemaker activity, which was voltage dependent, could be reset by brief current injections and could be entrained by repetitive stimuli. In the pacemaker group ( n = 18), eight neurons generated brief bursts (0.43 ± 0.03 s) at a relatively high frequency (1.05 ± 0.12 Hz) in CNQX. These bursts resembled the bursts that these neurons generated in the intact network during the interval between two inspiratory bursts. Cadmium (200 μM) altered but did not eliminate this bursting activity, while 0.5 μM tetrodotoxin suppressed bursting activity. Another set of pacemaker neurons (10 of 18) generated in CNQX longer bursts (1.57 ± 0.07 s) at a lower frequency (0.35 ± 0.01 Hz). These bursts resembled the inspiratory bursts generated in the intact network in phase with the population activity. This bursting activity was blocked by 50–100 μM cadmium or 0.5 μM tetrodotoxin. We conclude that the respiratory neural network contains pacemaker neurons with two types of bursting properties. The two types of pacemaker activities might have different functions within the respiratory network.


2006 ◽  
Vol 95 (4) ◽  
pp. 2070-2082 ◽  
Author(s):  
Jean-Charles Viemari ◽  
Jan-Marino Ramirez

Pacemakers are found throughout the mammalian CNS. Yet, it remains largely unknown how these neurons contribute to network activity. Here we show that for the respiratory network isolated in transverse slices of mice, different functions can be assigned to different types of pacemakers and nonpacemakers. This difference becomes evident in response to norepinephrine (NE). Although NE depolarized 88% of synaptically isolated inspiratory neurons, this neuromodulator had differential effects on different neuron types. NE increased in cadmium-insensitive pacemakers burst frequency, not burst area and duration, and it increased in cadmium-sensitive pacemakers burst duration and area, but not frequency. NE also differentially modulated nonpacemakers. Two types of nonpacemakers were identified: “silent nonpacemakers” stop spiking, whereas “active nonpacemakers” spontaneously spike when isolated from the network. NE selectively induced cadmium-sensitive pacemaker properties in active, but not silent, nonpacemakers. Flufenamic acid (FFA), a blocker of ICAN, blocked the induction as well as modulation of cadmium-sensitive pacemaker activity, and blocked at the network level the NE-induced increase in burst area and duration of inspiratory network activity; the frequency modulation (FM) was unaffected. We therefore propose that modulation of cadmium-sensitive pacemaker activity contributes at the network level to changes in burst shape, not frequency. Riluzole blocked the FM of isolated cadmium-insensitive pacemakers. In the presence of riluzole, NE caused disorganized network activity, suggesting that cadmium-insensitive pacemakers are critical for rhythm generation. We conclude that different types of nonpacemaker and pacemaker neurons differentially control different aspects of the respiratory rhythm.


Physiology ◽  
2003 ◽  
Vol 18 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Gérard Hilaire ◽  
Rosario Pásaro

The neural mechanisms responsible for respiratory rhythmogenesis in mammals were studied first in vivo in adults and subsequently in vitro in neonates. In vitro data have suggested that the pacemaker neurons are the kernel of the respiratory network. These data are reviewed, and their relevance to adults is discussed.


2000 ◽  
Vol 89 (5) ◽  
pp. 2015-2022 ◽  
Author(s):  
B. Wilken ◽  
J. M. Ramirez ◽  
F. Hanefeld ◽  
D. W. Richter

Aminophylline is a respiratory stimulant commonly used for the treatment of central apnea. Experiences from clinical practice, however, revealed that aminophylline is not reliably effective in preterm infants, whereas it is normally effective in infants and mature patients. In an established animal model for postnatal development of respiratory control mechanisms, we therefore examined the hypothesis that the clinical observations reflect a developmental change in the sensitivity of the central respiratory network to methylxanthines. The medullary respiratory network was isolated at different postnatal ages ( postnatal days 1–13; P1–P13) in a transverse mouse brain stem slice preparation. This preparation contains the pre-Bötzinger complex (PBC), a region that is critical for generation of respiratory rhythm. Spontaneous rhythmic respiratory activity was recorded from the hypoglossal (XII) rootlets and from neurons in the PBC by using the whole cell patch clamp technique. Bath-applied aminophylline [20 μM] increased the frequency (+41%) in neonatal animals (P1–P6) without affecting the amplitude of respiratory burst activity in XII rootlets. The same concentration of aminophylline did not have any significant effect on the frequency of respiratory XII bursts but increased the amplitude (+31%) in juvenile animals (P7–P13). In the same age group, aminophylline also augmented the amplitude and the duration of respiratory synaptic drive currents in respiratory PBC neurons. The data demonstrate that augmentation of the respiratory output is due to direct enhancement of central respiratory network activity and increase of synaptic drive of hypoglossal motoneurons in juvenile, but not neonatal, animals. This indicates a developmental change in the efficacy of aminophylline to reinforce central respiratory network activity. Therefore, we believe that the variable success in treating respiratory disturbances in premature infants reflects maturational changes in the expression of receptors and/or intracellular signal pathways in the central respiratory network.


2007 ◽  
Vol 292 (1) ◽  
pp. C508-C516 ◽  
Author(s):  
Frank Funke ◽  
Mathias Dutschmann ◽  
Michael Müller

The pre-Bötzinger complex (PBC) in the rostral ventrolateral medulla contains a kernel involved in respiratory rhythm generation. So far, its respiratory activity has been analyzed predominantly by electrophysiological approaches. Recent advances in fluorescence imaging now allow for the visualization of neuronal population activity in rhythmogenic networks. In the respiratory network, voltage-sensitive dyes have been used mainly, so far, but their low sensitivity prevents an analysis of activity patterns of single neurons during rhythmogenesis. We now have succeeded in using more sensitive Ca2+ imaging to study respiratory neurons in rhythmically active brain stem slices of neonatal rats. For the visualization of neuronal activity, fluo-3 was suited best in terms of neuronal specificity, minimized background fluorescence, and response magnitude. The tissue penetration of fluo-3 was improved by hyperosmolar treatment (100 mM mannitol) during dye loading. Rhythmic population activity was imaged with single-cell resolution using a sensitive charge-coupled device camera and a ×20 objective, and it was correlated with extracellularly recorded mass activity of the contralateral PBC. Correlated optical neuronal activity was obvious online in 29% of slices. Rhythmic neurons located deeper became detectable during offline image processing. Based on their activity patterns, 74% of rhythmic neurons were classified as inspiratory and 26% as expiratory neurons. Our approach is well suited to visualize and correlate the activity of several single cells with respiratory network activity. We demonstrate that neuronal synchronization and possibly even network configurations can be analyzed in a noninvasive approach with single-cell resolution and at frame rates currently not reached by most scanning-based imaging techniques.


2006 ◽  
Vol 95 (3) ◽  
pp. 1843-1852 ◽  
Author(s):  
Clemens Neusch ◽  
Nestoras Papadopoulos ◽  
Michael Müller ◽  
Iris Maletzki ◽  
Stefan M. Winter ◽  
...  

Ongoing rhythmic neuronal activity in the ventral respiratory group (VRG) of the brain stem results in periodic changes of extracellular K+. To estimate the involvement of the weakly inwardly rectifying K+ channel Kir4.1 (KCNJ10) in extracellular K+ clearance, we examined its functional expression in astrocytes of the respiratory network. Kir4.1 was expressed in astroglial cells of the VRG, predominantly in fine astrocytic processes surrounding capillaries and in close proximity to VRG neurons. Kir4.1 expression was up-regulated during early postnatal development. The physiological role of astrocytic Kir4.1 was studied using mice with a null mutation in the Kir4.1 channel gene that were interbred with transgenic mice expressing the enhanced green fluorescent protein in their astrocytes. The membrane potential was depolarized in astrocytes of Kir4.1−/− mice, and Ba2+-sensitive inward K+ currents were diminished. Brain slices from Kir4.1−/− mice, containing the pre-Bötzinger complex, which generates a respiratory rhythm, did not show any obvious differences in rhythmic bursting activity compared with wild-type controls, indicating that the lack of Kir4.1 channels alone does not impair respiratory network activity. Extracellular K+ measurements revealed that Kir4.1 channels contribute to extracellular K+ regulation. Kir4.1 channels reduce baseline K+ levels, and they compensate for the K+ undershoot. Our data indicate that Kir4.1 channels 1) are expressed in perineuronal processes of astrocytes, 2) constitute the major part of the astrocytic Kir conductance, and 3) contribute to regulation of extracellular K+ in the respiratory network.


1970 ◽  
Vol 2 ◽  
pp. 89-94
Author(s):  
M Ahmed

The existence and physiological role of Hering-Breuer reflex and pre-Botzinger complex has long been depreciated by the Bangladesh society of physiologist (personal communication). The aim of this mini review is to highlight the recent findings on the aforementioned topics. Due to the difficulties in vivo studies in human subjects, many aspects of the neuronal regulation of the respiratory rhythm are still unclear. However, the recent localization of the pre-Botzinger complex in humans and advances in technologies necessitates further exploration of the neuronal circuits in the pre-BotC complex which will subsequently unwrap the magical box and pave the way to solve the puzzle of the mechanism of respiratory rhythmogenesis and its modulation in different pathophysiological conditions. Key Words: Physiology; Hering-Breuer reflex; pre-Botzinger complex; Rhythmic respiration  DOI:10.3329/jbsp.v2i0.988 J Bangladesh Soc Physiol. 2007 Dec;(2):89-94.  


2007 ◽  
Vol 97 (3) ◽  
pp. 2283-2292 ◽  
Author(s):  
Benjamin J. Barnes ◽  
Chi-Minh Tuong ◽  
Nicholas M. Mellen

In mammals, respiration-modulated networks are distributed rostrocaudally in the ventrolateral quadrant of the medulla. Recent studies have established that in neonate rodents, two spatially separate networks along this column—the parafacial respiratory group (pFRG) and the pre-Bötzinger complex (preBötC)—are hypothesized to be sufficient for respiratory rhythm generation, but little is known about the connectivity within or between these networks. To be able to observe how these networks interact, we have developed a neonate rat medullary tilted sagittal slab, which exposes one column of respiration-modulated neurons on its surface, permitting functional imaging with cellular resolution. Here we examined how respiratory networks responded to hypoxic challenge and opioid-induced depression. At the systems level, the sagittal slab was congruent with more intact preparations: hypoxic challenge led to a significant increase in respiratory period and inspiratory burst amplitude, consistent with gasping. At opioid concentrations sufficient to slow respiration, we observed periods at integer multiples of control, matching quantal slowing. Consistent with single-unit recordings in more intact preparations, respiratory networks were distributed bimodally along the rostrocaudal axis, with respiratory neurons concentrated at the caudal pole of the facial nucleus, and 350 microns caudally, at the level of the pFRG and the preBötC, respectively. Within these regions neurons active during hypoxia- and/or opioid-induced depression were ubiquitous and interdigitated. In particular, contrary to earlier reports, opiate-insensitive neurons were found at the level of the preBötC.


1992 ◽  
Vol 263 (4) ◽  
pp. R962-R975 ◽  
Author(s):  
M. D. Ogilvie ◽  
A. Gottschalk ◽  
K. Anders ◽  
D. W. Richter ◽  
A. I. Pack

A mathematical model of the three-phase respiratory network proposed by Richter et al. (News Physiol. Sci. 1: 109-112, 1986) is developed and its properties are examined. The model reproduces the experimentally determined trajectories of membrane potential for the five physiologically distinct types of neurons included. Stepwise parameter changes can produce a respiratory rhythm with only two separate electrophysiological phases, result in apnea, or produce more complex patterns of firing. The phase-resetting behavior of the model was obtained with perturbing stimuli and is comparable to experimentally determined phase-resetting data. There is reasonable agreement between model predictions and experimental results. In the model, the properties of the phase singularity make termination of the respiratory rhythm by an appropriately timed perturbation virtually impossible, which is in agreement with experimental observations. The rhythm can be stopped by alterations that simulate the effect of input from the superior laryngeal nerve; the rhythm is locked in the postinspiratory phase. We conclude that our results are consistent with the concept of a network oscillator as the source of the respiratory rhythm.


Sign in / Sign up

Export Citation Format

Share Document