scholarly journals Nonlinear Dynamic Behaviors of Rotated Blades with Small Breathing Cracks Based on Vibration Power Flow Analysis

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hailong Xu ◽  
Zhongsheng Chen ◽  
Yeping Xiong ◽  
Yongmin Yang ◽  
Limin Tao

Rotated blades are key mechanical components in turbomachinery and high cycle fatigues often induce blade cracks. Accurate detection of small cracks in rotated blades is very significant for safety, reliability, and availability. In nature, a breathing crack model is fit for a small crack in a rotated blade rather than other models. However, traditional vibration displacements-based methods are less sensitive to nonlinear characteristics due to small breathing cracks. In order to solve this problem, vibration power flow analysis (VPFA) is proposed to analyze nonlinear dynamic behaviors of rotated blades with small breathing cracks in this paper. Firstly, local flexibility due to a crack is derived and then time-varying dynamic model of the rotated blade with a small breathing crack is built. Based on it, the corresponding vibration power flow model is presented. Finally, VPFA-based numerical simulations are done to validate nonlinear behaviors of the cracked blade. The results demonstrate that nonlinear behaviors of a crack can be enhanced by power flow analysis and VPFA is more sensitive to a small breathing crack than displacements-based vibration analysis. Bifurcations will occur due to breathing cracks and subharmonic resonance factors can be defined to identify breathing cracks. Thus the proposed method can provide a promising way for detecting and predicting small breathing cracks in rotated blades.

2014 ◽  
Vol 638-640 ◽  
pp. 163-167
Author(s):  
Zhong Hao Pang ◽  
Xiang Zhu ◽  
Tian Yun Li ◽  
Ling Zhang

Plates are commonly used in engineering structures. However crack is the most common form of damages in the plate structures. The crack in the plate will open and close during vibrational cycle, making the cracked structure with nonlinear dynamic characteristics. Based on vibrational power flow theory, the nonlinear dynamic analysis of a plate structure is carried out. The contact elements are used to simulate the nonlinear behavior of the breathing crack. Aiming to study the input power characteristics and the super harmonic resonance of a breathing cracked plate which is under the resonant excitation. By the finite element calculation, the structural input power curve is analyzed, which provides a theoretical basis for the damage identification of cracked structures.


Author(s):  
Jiang-Hai Wu ◽  
Hong-Zhen Zhu ◽  
Zhi-Yong Yin ◽  
Fang An ◽  
Ling-Bo Zhou

Sign in / Sign up

Export Citation Format

Share Document