scholarly journals Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells toγ-Radiation by Attenuating DNA Repair Pathways

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Juliana H. Osaki ◽  
Gisele Espinha ◽  
Yuli T. Magalhaes ◽  
Fabio L. Forti

Radiotherapy withγ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells. Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated. Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses ofγ-radiation. HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis. Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA. In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR) and nonhomologous end joining (NHEJ). These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity.

2003 ◽  
Vol 376 (1) ◽  
pp. 253-260 ◽  
Author(s):  
Pachiyappan KAMARAJAN ◽  
Nian-Kang SUN ◽  
Chuck C.-K. CHAO

Cisplatin-selected cervix carcinoma HeLa cell lines induced less apoptosis, and weaker activation by cisplatin or Fas-activating antibody, of mitochondrial-associated caspase-9 and death receptor-mediated caspase-8 than did parental cells. Furthermore, less DISC (death-inducing signalling complex) was formed in cisplatin-selected cell lines than in parental cells. Ac-IETD-CHO (acetyl-Ile-Glu-Thr-Asp-aldehyde), which has a certain preference for inhibiting caspase-8, or Fas-antagonistic antibody, significantly inhibited cisplatin-induced apoptosis in both parental and cisplatin-selected HeLa cell lines. These results imply that cell-surface death signalling is inducible by cisplatin; that reduction of this pathway is associated with drug resistance, and that cisplatin-selected cells acquire cross-resistance to cell-surface death signalling. Sequential up-regulation of FLIP (FLICE-like inhibitory protein), but not Bcl-2, Bcl-xL or inhibitors of apoptosis protein (IAPs), was observed in resistant cells but not in parental cells. The inhibition of FLIP by FLIP antisense oligonucleotides promotes cisplatin and Fas-antibody-induced apoptosis. However, the modulation of apoptosis by FLIP antisense oligonucleotides in resistant cells is greater than that in parental cells. The presented data reveal that the up-regulation of FLIP may contribute to the suppression of apoptosis and thereby change cells that are resistant to cisplatin and Fas-mediated death signals. The results also show that cancer cells that have undergone long-term chemotherapy and become chemoresistant may change the FLIP level, becoming cross-resistant to death factors such as Fas.


2019 ◽  
Vol 7 (4) ◽  
pp. 91-96
Author(s):  
Isra'a Al-sobhi ◽  
◽  
Rawan Al-Ghabban ◽  
Soad Shaker Ali ◽  
Jehan Al-Amri ◽  
...  

Author(s):  
Chen Shi ◽  
Yue-Ling Peng ◽  
Juan He ◽  
Zheng-Hui Li ◽  
Ji-Kai Liu ◽  
...  

AbstractTwo undescribed Tricholoma triterpenoids, namely tricholopardins C (1) and D (2), were isolated from the wild mushroom Tricholoma pardinum. Their structures with absolute configurations were elucidated by spectroscopic methods, as well as the single crystal X-ray diffraction. Compounds 1 and 2 were further obtained by chemical conversions from the known analogues. Compound 1 showed significant cytotoxicity to MCF-7 and Hela cell lines with IC50 values of 4.7 μM and 9.7 μM, respectively. Its mechanism of inducing MCF-7 cell apoptosis was studied briefly. Graphical Abstract


2007 ◽  
Vol 17 (13) ◽  
pp. 3676-3681 ◽  
Author(s):  
Carlos A. Sanhueza ◽  
Carlos Mayato ◽  
Rubén P. Machı´n ◽  
José M. Padrón ◽  
Rosa L. Dorta ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A944-A944
Author(s):  
Anand Kornepati ◽  
Clare Murray ◽  
Barbara Avalos ◽  
Cody Rogers ◽  
Kavya Ramkumar ◽  
...  

BackgroundTumor surface-expressed programmed death-ligand 1 (PD-L1) suppresses immunity when it engages programmed death-1 (PD-1) on anti-tumor immune cells in canonical PD-L1/PD-1.1 Non-canonical, tumour-intrinsic PD-L1 signals can mediate treatment resistance2–6 but mechanisms remain incompletely understood. Targeting non-canonical, cell-intrinsic PD-L1 signals, especially modulation of the DNA damage response (DDR), remains largely untapped.MethodsWe made PD-L1 knockout (PD-L1 KO) murine transplantable and human cell lines representing melanoma, bladder, and breast histologies. We used biochemical, genetic, and cell-biology techniques for mechanistic insights into tumor-intrinsic PD-L1 control of specific DDR and DNA repair pathways. We generated a novel inducible melanoma GEMM lacking PD-L1 only in melanocytes to corroborate DDR alterations observed in PD-L1 KO of established tumors.ResultsGenetic tumor PD-L1 depletion destabilized Chk2 and impaired ATM/Chk2, but not ATR/Chk1 DDR. PD-L1KO increased DNA damage (γH2AX) and impaired homologous recombination DNA repair (p-RPA32, BRCA1, RAD51 nuclear foci) and function (DR-GFP reporter). PD-L1 KO cells were significantly more sensitive versus controls to DDR inhibitors (DDRi) against ATR, Chk1, and PARP but not ATM in multiple human and mouse tumor models in vitro and in vivo in NSG mice. PD-1 independent, intracellular, not surface PD-L1 stabilized Chk2 protein with minimal Chek2 mRNA effect. Mechanistically, PD-L1 could directly complex with Chk2, protecting it from PIRH2-mediated polyubiquitination. PD-L1 N-terminal domains Ig-V and Ig-C but not the PD-L1 C-terminal tail co-IP’d with Chk2 and restored Chk1 inhibitor (Chk1i) treatment resistance. Tumor PD-L1 expression correlated with Chk1i sensitivity in 44 primary human small cell lung cancer cell lines, implicating tumor-intrinsic PD-L1 as a DDRi response biomarker. In WT mice, genetic PD-L1 depletion but not surface PD-L1 blockade with αPD-L1, sensitized immunotherapy-resistant, BRCA1-WT 4T1 tumors to PARP inhibitor (PARPi). PARPi effects were reduced on PD-L1 KO tumors in RAG2KO mice indicating immune-dependent DDRi efficacy. Tumor PD-L1 depletion, likely due to impaired DDR, enhanced PARPi induced tumor-intrinsic STING activation (e.g., p-TBK1, CCL5) suggesting potential to augment immunotherapies.ConclusionsWe challenge the prevailing surface PD-L1 paradigm and establish a novel mechanism for cell-intrinsic PD-L1 control of the DDR and gene product expression. We identify therapeutic vulnerabilities from tumor PD-L1 depletion utilizing small molecule DDRi currently being tested in clinical trials. Data could explain αPD-L1/DDRi treatment resistance. Intracellular PD-L1 could be a pharmacologically targetable treatment target and/or response biomarker for selective DDRi alone plus other immunotherapies.ReferencesTopalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287, doi:10.1038/nrc.2016.36 (2016).Clark CA, et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis and autophagy in ovarian cancer and melanoma. Canres 0258.2016 (2016).Gupta HB et al. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer. 1, 16030 (2016).Zhu H, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16:2829–2837, doi:10.1016/j.celrep.2016.08.032 (2016)Wu B, et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer. Oncoimmunology 7:e1500107, doi:10.1080/2162402X.2018.1500107 (2018)Liang J, et al. Verteporfin inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol Res 8:952–965, doi:10.1158/2326-6066.CIR-19-0159 (2020)


Sign in / Sign up

Export Citation Format

Share Document