scholarly journals Effector, Memory, and Dysfunctional CD8+T Cell Fates in the Antitumor Immune Response

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
John Reiser ◽  
Arnob Banerjee

The adaptive immune system plays a pivotal role in the host’s ability to mount an effective, antigen-specific immune response against tumors. CD8+tumor-infiltrating lymphocytes (TILs) mediate tumor rejection through recognition of tumor antigens and direct killing of transformed cells. In growing tumors, TILs are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment. These interactions and signals can lead to transcriptional, functional, and phenotypic changes in TILs that diminish the host’s ability to eradicate the tumor. In addition to effector and memory CD8+T cells, populations described as exhausted, anergic, senescent, and regulatory CD8+T cells have been observed in clinical and basic studies of antitumor immune responses. In the context of antitumor immunity, these CD8+T cell subsets remain poorly characterized in terms of fate-specific biomarkers and transcription factor profiles. Here we discuss the current characterization of CD8+T cell fates in antitumor immune responses and discuss recent insights into how signals in the tumor microenvironment influence TIL transcriptional networks to promote CD8+T cell dysfunction.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A586-A586
Author(s):  
Sara Schad ◽  
Andrew Chow ◽  
Heng Pan ◽  
Levi Mangarin ◽  
Roberta Zappasodi ◽  
...  

BackgroundCD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4+CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5MethodsOur lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells re-expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice.ResultsSpecifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors.ConclusionsOur findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.Ethics ApprovalThe human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107ReferencesEllmeier W, Haust L & Tschismarov R. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013;70:4537–4553.Luckey MA, et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology 2014; 15, 638–645.Bohner P, et al. Double positive CD4(+)CD8(+) T Cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 2019; 10, 622.Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE & Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004;104:478–486.Nishida K, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma. Int Immunol 2020;32:347–357.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3242-3242
Author(s):  
Robbert van der Voort ◽  
Claudia Brandao ◽  
Thomas J. Volman ◽  
Viviènne Verweij ◽  
Klaas van Gisbergen ◽  
...  

Abstract Abstract 3242 Although the importance of the bone marrow (BM) in hematopoiesis is well known, its function in adaptive immune responses has only recently been acknowledged. Currently it is known that the BM contains fully functional CD4+ and CD8+ T cells that can engage in both primary and secondary immune responses. Interestingly, most of these T cells belong to the memory T cell lineage, identifying the BM as one of the largest memory T cell reservoirs in the body. Since not much is known about the trafficking of BM T cells, we compared the homing phenotype and function of T cell subsets in the BM, blood, spleen and peripheral lymph nodes (pLN). In addition, we determined the expression of chemokine mRNA and protein levels in the BM and other lymphoid organs. We confirmed that at least 80% of the CD4+ and 60% of the CD8+ BM T cells have a memory phenotype, and that most CD4+ T cells belong to the effector memory lineage, while the CD8+ population predominantly consists of central memory T cells. Most BM T cells expressed the chemokine receptor CXCR3, the adhesion molecules P-selectin glycoprotein ligand 1 and VLA-4, and increased levels of CD44 and LFA-1, as compared to T cells from the spleen. In addition, L-selectin was absent from most CD4+ BM T cells, but present on virtually all CD8+ T cells. Notably, the percentage of CXCR3+ T cells within the effector memory and central memory subsets from BM was higher than within the same subsets from pLN. Furthermore, BM contained significant mRNA levels of the CXCR3 ligands CXCL9, CXCL10 and CXCL11. An in vivo migration assay using a mixture of fluorescent-labeled T cells from CXCR3-deficient mice and control mice indicated however that during homeostasis CXCR3 does not play a major role in BM entry or retention. These data suggest that CXCR3 expressed by memory T cells is rather involved in BM exit, than in BM entry. Indeed, we observed that, as compared to control mice, CXCR3−/− mice contained significantly more CD4+ and CD8+ T cells in their BM. Additional in vitro assays demonstrated that CD4+ and CD8+ BM T cells migrated vigorously in response to CXCL9 and CXCL10, generally released in high concentrations during inflammation. Finally, we demonstrate that CXCR3−/− effector/effector memory T cells, but not wild type T cells, accumulate in the BM of mice infected with lymphocytic choriomeningitis virus. Altogether, these data demonstrate that the BM is a major reservoir of memory T cells that employ CXCR3 to quickly respond to chemotactic signals from inflamed tissues. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Annalisa Agnone ◽  
Alessandra Torina ◽  
Gesualdo Vesco ◽  
Sara Villari ◽  
Fabrizio Vitale ◽  
...  

Zoonoses include a broad range of diseases, that are becoming of great interest, due to the climate changing, that cause the adaptation of vectors to new niches and environments. Host immune responses play a crucial role in determining the outcome of infections, as documented by expansion of antigen-specific T cells during several zoonotic infections. Thus, understanding of the contribution of antigen-specific T-cell subsets in the host immune response is a powerful tool to evaluate the different immunological mechanisms involved in zoonotic infections and for the development of effective vaccines. In this paper we discuss the role of T cells in some eukaryotic and prokaryotic infectious models.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ahmed Gaballa ◽  
Lucas C. M. Arruda ◽  
Emelie Rådestad ◽  
Michael Uhlin

The role of gamma delta (γδ) T cells in human cytomegalovirus (HCMV) immune surveillance has been the focus of research interest for years. Recent reports have shown a substantial clonal proliferation of γδ T cells in response to HCMV, shedding light on the adaptive immune response of γδ T cells. Nevertheless, most efforts have focused on Vδ2negγδ T cell subset while less attention has been given to investigate other less common γδ T cell subsets. In this regard, a distinct subpopulation of γδ T cells that expresses the CD8 coreceptor (CD8+γδ T cells) has not been thoroughly explored. Whether it is implicated in HCMV response and its ability to generate adaptive response has not been thoroughly investigated. In this study, we combined flow cytometry and immune sequencing of the TCR γ-chain (TRG) to analyze in-depth bone marrow (BM) graft γδ T cells from CMV seropositive (CMV+) and CMV seronegative (CMV-) donors. We showed that the frequency of CD8+γδ T cells was significantly higher in CMV+ grafts compared to CMV- grafts (P<0.001). Further characterization revealed that CD8+γδ T cells from CMV+ grafts express Vγ9- and preferentially differentiated from a naive to terminal effector memory phenotype (CD27low/-CD45RO-). In line with these findings, TRG immune sequencing revealed clonal focusing and reduced usage of the Vγ9/JP gene segment in a CMV+ graft. Furthermore, CD8+γδ T cells showed an enhanced response to TCR/CD3 and cytokine stimulation in contrast to CD8-γδ T cells. We conclude that γδ T cells in BM grafts are reshaped by donor CMV serostatus and highlight the potential adaptive role of CD8+γδ T cells in HCMV immune response.


2017 ◽  
Vol 92 (3) ◽  
Author(s):  
Mayara F. Maggioli ◽  
Steve Lawson ◽  
Marcelo de Lima ◽  
Lok R. Joshi ◽  
Tatiane C. Faccin ◽  
...  

ABSTRACT Senecavirus A (SVA), an emerging picornavirus of swine, causes vesicular disease (VD) that is clinically indistinguishable from foot-and-mouth disease (FMD) in pigs. Many aspects of SVA interactions with the host and the host immune responses to infection, however, remain unknown. In the present study, humoral and cellular immune responses to SVA were evaluated following infection in pigs. We show that SVA infection elicited an early and robust virus-neutralizing (VN) antibody response, which coincided and was strongly correlated with VP2- and VP3-specific IgM responses. Notably, the neutralizing antibody (NA) responses paralleled the reduction of viremia and resolution of the disease. Analysis of the major porcine T-cell subsets revealed that during the acute/clinical phase of SVA infection (14 days postinfection [p.i.]), T-cell responses were characterized by an increased frequency of αβ T cells, especially CD4 + T cells, which were first detected by day 7 p.i. and increased in frequency until day 14 p.i. Additionally, the frequency of CD8 + and double-positive CD4 + CD8 + T cells (effector/memory T cells) expressing interferon gamma (IFN-γ) or proliferating in response to SVA antigen stimulation increased after day 10 p.i. Results presented here show that SVA elicits B- and T-cell activation early upon infection, with IgM antibody levels being correlated with early neutralizing activity against the virus and peak B- and T-cell responses paralleling clinical resolution of the disease. The work provides important insights into the immunological events that follow SVA infection in the natural host. IMPORTANCE Senecavirus A (SVA) has recently emerged in swine, causing outbreaks of vesicular disease (VD) in major swine-producing countries around the world, including the United States, Brazil, China, Thailand, and Colombia. Notably, SVA-induced disease is clinically indistinguishable from other high-consequence VDs of swine, such as FMD, swine vesicular disease, vesicular stomatitis, and vesicular exanthema of swine. Despite the clinical relevance of SVA-induced VD, many aspects of the virus infection biology remain unknown. Here, we assessed host immune responses to SVA infection. The results show that SVA infection elicits early B- and T-cell responses, with the levels of VN antibody and CD4 + T-cell responses paralleling the reduction of viremia and resolution of the disease. SVA-specific CD8 + T cells are detected later during infection. A better understanding of SVA interactions with the host immune system may allow the design and implementation of improved control strategies for this important pathogen of swine.


2011 ◽  
Vol 79 (8) ◽  
pp. 3358-3365 ◽  
Author(s):  
Dan Qiao ◽  
Li Li ◽  
Jian Guo ◽  
Suihua Lao ◽  
Xianlan Zhang ◽  
...  

ABSTRACTT cell-mediated immunity is critical for the control ofMycobacterium tuberculosisinfection. Identifying the precise immune mechanisms that lead to control of initialM. tuberculosisinfection and preventing reactivation of latent infection are crucial for combating tuberculosis. However, a detailed understanding of the role of T cells in the immune response to infection has been hindered. In addition, there are few flow cytometry studies characterizing the Vβ repertoires of T cell receptors (TCRs) at local sites ofM. tuberculosisinfection in adult tuberculosis. In this study, we used culture filtrate protein 10 (CFP-10) fromM. tuberculosisto characterize T cells at local sites of infection. We simultaneously analyzed the correlation of the production of cytokines with TCR Vβ repertoires in CFP-10-specific CD4+and CD8+T cell subsets. For the first time, we demonstrate that CFP-10-specific CD4+or CD8+T cells from tubercular pleural fluid can produce high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and upregulate the expression of CD107a/b on the cell surface. The CFP-10-specific cells were effector/memory cells with a CD45RO+CD62L−CCR7−CD27−expression profile. In addition, we found CFP-10-specific CD4+and CD8+T cells in tubercular pleural fluid, with biased usage of TCR Vβ9, Vβ12, or Vβ7.2. Our findings of CFP-10-specific CD4+and CD8+T cells in tubercular pleural fluid are critical for understanding the mechanisms of the local cellular immune response and developing more effective therapeutic interventions in cases ofM. tuberculosisinfection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lu Jin ◽  
Lushuai Jin ◽  
Renjie Wu ◽  
Xia Liu ◽  
Xinhai Zhu ◽  
...  

Background: Targeting exhausted T (Tex) cells is a promising strategy for anti-tumour treatment. Previously, we demonstrated that Hirsutella sinensis fungus (HSF) could significantly increase T cell infiltration and the effector T cell ratio in the tumor microenvironment, activating systemic immune responses. However, we do not know how HSF regulates Tex cells in the tumor microenvironment. Here, we explored the mechanism underlying HSF inhibition of Tex cells and tumor growth and metastasis in breast cancer.Methods: We examined the effects of HSF on various tumor mouse models using in vivo imaging technology. Lung metastasis was detected by H&amp;E staining and the T cell subsets in the tumor microenvironment were assayed with flow cytometry. The in vitro proliferation, function and apoptosis of CD8+ T cells were measured, as well as the T-bet and PD-1 mRNA expressions.Results: HSF inhibited tumor growth and lung metastasis in the mice, and had significantly higher CD44LowCD62LHi and CD44HiCD62LLowpopulations in the tumour-infiltrating CD8+ T cells. However, HSF significantly reduced levels of inhibitory receptors, such as PD-1, TIGIT, CTLA-4, and regulatory T cells. In vitro, HSF inhibited the CD8+ T cell apoptosis rate, and promoted CD8+ T cell proliferation and secretion of interferon (IFN)-γ and granzyme B. Furthermore, HSF treatment both in vivo and in vitro significantly increased Eomes expression, while decreasing T-bet expression.Conclusion: HSF exerted anti-tumour effects mainly through the immune system, by promoting effector/memory T cells and reducing Tex cell production in the tumor microenvironment. The specific mechanisms involved inhibiting T-bet and promoting Eomes to decrease the expression of immune inhibitor receptors and enhance the T cell function, respectively.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1850
Author(s):  
Justine Cinier ◽  
Margaux Hubert ◽  
Laurie Besson ◽  
Anthony Di Roio ◽  
Céline Rodriguez ◽  
...  

Regulatory T cells (Tregs) are present in a large majority of solid tumors and are mainly associated with a poor prognosis, as their major function is to inhibit the antitumor immune response contributing to immunosuppression. In this review, we will investigate the mechanisms involved in the recruitment, amplification and stability of Tregs in the tumor microenvironment (TME). We will also review the strategies currently developed to inhibit Tregs’ deleterious impact in the TME by either inhibiting their recruitment, blocking their expansion, favoring their plastic transformation into other CD4+ T-cell subsets, blocking their suppressive function or depleting them specifically in the TME to avoid severe deleterious effects associated with Treg neutralization/depletion in the periphery and normal tissues.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document