scholarly journals The Potential of Curcumin in Treatment of Spinal Cord Injury

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Raghavendra Sanivarapu ◽  
Vijayalakshmi Vallabhaneni ◽  
Vivek Verma

Current treatment for spinal cord injury (SCI) is supportive at best; despite great efforts, the lack of better treatment solutions looms large on neurological science and medicine. Curcumin, the active ingredient in turmeric, a spice known for its medicinal and anti-inflammatory properties, has been validated to harbor immense effects for a multitude of inflammatory-based diseases. However, to date there has not been a review on curcumin’s effects on SCI. Herein, we systematically review all known data on this topic and juxtapose results of curcumin with standard therapies such as corticosteroids. Because all studies that compare the two show superior results for curcumin over corticosteroids, it could be true that curcumin better acts at the inflammatory source of SCI-mediated neurological injury, although this question remains unanswered in patients. Because curcumin has shown improvements from current standards of care in other diseases with few true treatment options (e.g., osteoarthritis), there is immense potential for this compound in treating SCI. We critically and systematically summarize available data, discuss clinical implications, and propose further testing of this well-tolerated compound in both the preclinical and the clinical realms. Analyzing preclinical data from a clinical perspective, we hope to create awareness of the incredible potential that curcumin shows for SCI in a patient population that direly needs improvements on current therapy.

2019 ◽  
Vol 12 (2) ◽  
pp. 65 ◽  
Author(s):  
Inês M. Pereira ◽  
Ana Marote ◽  
António J. Salgado ◽  
Nuno A. Silva

Spinal cord injury (SCI) can lead to severe motor, sensory and social impairments having a huge impact on patients’ lives. The complex and time-dependent SCI pathophysiology has been hampering the development of novel and effective therapies. Current treatment options include surgical interventions, to stabilize and decompress the spinal cord, and rehabilitative care, without providing a cure for these patients. Novel therapies have been developed targeting different stages during trauma. Among them, cell-based therapies hold great potential for tissue regeneration after injury. Neural stem cells (NSCs), which are multipotent cells with inherent differentiation capabilities committed to the neuronal lineage, are especially relevant to promote and reestablish the damaged neuronal spinal tracts. Several studies demonstrate the regenerative effects of NSCs in SCI after transplantation by providing neurotrophic support and restoring synaptic connectivity. Therefore, human clinical trials have already been launched to assess safety in SCI patients. Here, we review NSC-based experimental studies in a SCI context and how are they currently being translated into human clinical trials.


2021 ◽  
pp. 153857442110024
Author(s):  
Rozina Yasmin Choudhury ◽  
Kamran Basharat ◽  
Syeda Anum Zahra ◽  
Tien Tran ◽  
Lara Rimmer ◽  
...  

Over the decades, the Frozen Elephant Trunk (FET) technique has gained immense popularity allowing simplified treatment of complex aortic pathologies. FET is frequently used to treat aortic conditions involving the distal aortic arch and the proximal descending aorta in a single stage. Surgical preference has recently changed from FET procedures being performed at Zone 3 to Zone 2. There are several advantages of Zone 2 FET over Zone 3 FET including reduction in spinal cord injury, visceral ischemia, neurological and cardiovascular sequelae. In addition, Zone 2 FET is a technically less complicated procedure. Literature on the comparison between Zone 3 and Zone 2 FET is scarce and primarily observational and anecdotal. Therefore, further research is warranted in this paradigm to substantiate current surgical treatment options for complex aortic pathologies. In this review, we explore literature surrounding FET and the reasons for the shift in surgical preference from Zone 3 to Zone 2.


2005 ◽  
Vol 85 (1) ◽  
pp. 52-66 ◽  
Author(s):  
T George Hornby ◽  
David H Zemon ◽  
Donielle Campbell

AbstractBackground and Purpose. Performance of therapist-assisted, body-weight–supported treadmill training (BWSTT) to enhance walking ability of people with neurological injury is an area of intense research. Its application in the clinical setting, however, is limited by the personnel and labor requirements placed on physical therapists. Recent development of motorized (“robotic”) rehabilitative devices that provide assistance during stepping may improve delivery of BWSTT. Case Description. This case report describes the use of a robotic device to enhance motor recovery and ambulation in 3 people following motor incomplete spinal cord injury. Interventions. Changes in motor impairment, functional limitations, and locomotor disability were monitored weekly during robotic-assisted BWSTT and following transition to therapist-assisted BWSTT with the assistance of one therapist. Outcomes. Following this training, 2 patients recovered independent over-ground walking and another improved his gait speed and endurance. Discussion. The use of robotic devices may assist physical therapists by providing task-specific practice of stepping in people following neurological injury.


2020 ◽  
Vol 7 ◽  
Author(s):  
Melissa J. Lewis ◽  
Nicolas Granger ◽  
Nick D. Jeffery ◽  

Some dogs do not make a full recovery following medical or surgical management of acute canine intervertebral disc herniation (IVDH), highlighting the limits of currently available treatment options. The multitude of difficulties in treating severe spinal cord injury are well-recognized, and they have spurred intense laboratory research, resulting in a broad range of strategies that might have value in treating spinal cord-injured dogs. These include interventions that aim to directly repair the spinal cord lesion, promote axonal sparing or regeneration, mitigate secondary injury through neuroprotective mechanisms, or facilitate functional compensation. Despite initial promise in experimental models, many of these techniques have failed or shown mild efficacy in clinical trials in humans and dogs, although high quality evidence is lacking for many of these interventions. However, the continued introduction of new options to the veterinary clinic remains important for expanding our understanding of the mechanisms of injury and repair and for development of novel and combined strategies for severely affected dogs. This review outlines adjunctive or emerging therapies that have been proposed as treatment options for dogs with acute IVDH, including discussion of local or lesion-based approaches as well as systemically applied treatments in both acute and subacute-to-chronic settings. These interventions include low-level laser therapy, electromagnetic fields or oscillating electrical fields, adjunctive surgical techniques (myelotomy or durotomy), systemically or locally-applied hypothermia, neuroprotective chemicals, physical rehabilitation, hyperbaric oxygen therapy, electroacupuncture, electrical stimulation of the spinal cord or specific peripheral nerves, nerve grafting strategies, 4-aminopyridine, chondroitinase ABC, and cell transplantation.


1988 ◽  
Vol 68 (1) ◽  
pp. 25-30 ◽  
Author(s):  
John R. Ruge ◽  
Grant P. Sinson ◽  
David G. McLone ◽  
Leonard J. Cerullo

✓ Maturity of the spine and spine-supporting structures is an important variable distinguishing spinal cord injuries in children from those in adults. Cinical data are presented from 71 children aged 12 years or younger who constituted 2.7% of 2598 spinal cord-injured patients admitted to the authors' institutions from June, 1972, to June, 1986. The 47 children with traumatic spinal cord injury averaged 6.9 years of age and included 20 girls (43%). The etiology of the pediatric injuries differed from that of adult injuries in that falls were the most common causative factor (38%) followed by automobile-related injuries (20%). Ten children (21.3%) had spinal cord injury without radiographic abnormality (SCIWORA), whereas 27 (57%) had evidence of neurological injury. Complete neurological injury was seen in 19% of all traumatic pediatric spinal cord injuries and in 40% of those with SCIWORA. The most frequent level of spinal injury was C-2 (27%, 15 cases) followed by T-10 (13%, seven cases). Upon statistical examination of the data, a subpopulation of children aged 3 years or younger emerged. These very young children had a significant difference in level of injury, requirement for surgical stability, and sex distribution compared to 4- to 12-year-old children.


2008 ◽  
Vol 25 (5) ◽  
pp. E15 ◽  
Author(s):  
Henry Ahn ◽  
Michael G. Fehlings

Object In this report, the authors suggest evidence-based approaches to minimize the chance of perioperative spinal cord injury (POSCI) and optimize outcome in the event of a POSCI. Methods A systematic review of the basic science and clinical literature is presented. Results Authors of clinical studies have assessed intraoperative monitoring to minimize the chance of POSCI. Furthermore, preoperative factors and intraoperative issues that place patients at increased risk of POSCI have been identified, including developmental stenosis, ankylosing spondylitis, preexisting myelopathy, and severe deformity with spinal cord compromise. However, no studies have assessed methods to optimize outcomes specifically after POSCIs. There are a number of studies focussed on the pathophysiology of SCI and the minimization of secondary damage. These basic science and clinical studies are reviewed, and treatment options outlined in this article. Conclusions There are a number of treatment options, including maintenance of mean arterial blood pressure > 80 mm Hg, starting methylprednisolone treatment preoperatively, and multimodality monitoring to help prevent POSCI occurrence, minimize secondary damage, and potentially improve the clinical outcome of after a POSCI. Further prospective cohort studies are needed to delineate incidence rate, current practice patterns for preventing injury and minimizing the clinical consequences of POSCI, factors that may increase the risk of POSCI, and determinants of clinical outcome in the event of a POSCI.


2013 ◽  
Vol 19 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Ross Chafetz ◽  
John P. Gaughan ◽  
Christina Calhoun ◽  
Jennifer Schottler ◽  
Lawrence Vogel ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 155-159
Author(s):  
Abdulai Bangura ◽  
Thomas Shuler ◽  
Lisa Wright ◽  
Anne Lake

Background: Among the various etiologies of osteoporosis, spinal cord injury has a drastic progression of the disease, causing weekly bone loss. There is no definitive treatment for the prevention of osteoporosis in these individuals. This review illustrates the recent findings on the pathophysiology, treatment, and management of spinal cord injury-induced osteoporosis. Furthermore, we cover a case of a male patient who experienced severe bone loss after a spinal cord injury at the age of 21 years. The Case: We have a 57-year-old man with a history of AIS grade A spinal cord injury, level T11 with rod fixation from a motorcycle collision at age 21. His fracture history following the injury includes tibia, femur, and vertebral fractures. Bone mineral density imaging revealed notable T-scores ranging from -3.1 to -3.4 at the hip and femurs. Treatment plan consisted of teriparatide, dietary supplements, and physical therapy. Biomarkers from baseline to post one month of treatment revealed the following: procollagen type 1 N-terminal propeptide from 38 mcg/L to 70 mcg/L and C-terminal telopeptide from 209 pg/mL to 88 pg/mL, representing an increased bone formation and decreased bone resorption, respectively. After two years, bone mineral density T-scores improved to -2.7 on the left and the patient was capable of standing for the first time with the assistance of a standing frame. Conclusion: Our case exemplified the progression of the disease and treatment options. A basis for the derivation of future innovative therapies has been covered. Favorable treatments and management are described in the review.


2020 ◽  
Vol 8 (4S) ◽  
pp. 130-134
Author(s):  
N. I. Zagorodnikov ◽  
I. K. Halivopulo ◽  
A. V. Sotnikov ◽  
E. I. Ardasheva

Percutaneous Vertebroplasty (PVP) is the minimally invasive radiological procedure consisting in the transdermal injection of bone cement into the damaged vertebral body. PVP performing has a high risk of complications including vascular embolism which has value from 3.5 to 30 %. There is an example of cardioembolism with bone cement as a result of PVP complication after surgical treatment of a patient with a spinal cord injury after ancar accident and the successful extraction of this embolus is given in this clinical case.The authors describe the approaches to this problem, including the diagnosis of the condition and treatment options.


Sign in / Sign up

Export Citation Format

Share Document