scholarly journals New Hydroxycinnamic Acid Esters as Novel 5-Lipoxygenase Inhibitors That Affect Leukotriene Biosynthesis

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Luc H. Boudreau ◽  
Grégoire Lassalle-Claux ◽  
Marc Cormier ◽  
Sébastien Blanchard ◽  
Marco S. Doucet ◽  
...  

Leukotrienes are inflammatory mediators that actively participate in the inflammatory response and host defense against pathogens. However, leukotrienes also participate in chronic inflammatory diseases. 5-lipoxygenase is a key enzyme in the biosynthesis of leukotrienes and is thus a validated therapeutic target. As of today, zileuton remains the only clinically approved 5-lipoxygenase inhibitor; however, its use has been limited due to severe side effects in some patients. Hence, the search for a better 5-lipoxygenase inhibitor continues. In this study, we investigated structural analogues of caffeic acid phenethyl ester, a naturally-occurring 5-lipoxygenase inhibitor, in an attempt to enhance the inhibitory activity against 5-lipoxygenase and determine structure-activity relationships. These compounds were investigated for their ability to attenuate the biosynthesis of leukotrienes. Compounds 13 and 19, phenpropyl and diphenylethyl esters, exhibited significantly enhanced inhibitory activity when compared to the reference molecules caffeic acid phenethyl ester and zileuton.

Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 312 ◽  
Author(s):  
William Collins ◽  
Noah Lowen ◽  
David J. Blake

American Foulbrood (AFB) is a deadly bacterial disease affecting pupal and larval honey bees. AFB is caused by the endospore-forming bacterium Paenibacillus larvae (PL). Propolis, which contains a variety of organic compounds, is a product of bee foraging and is a resinous substance derived from botanical substances found primarily in trees. Several compounds from the class of caffeic acid esters, which are commonly found in propolis, have been shown to have antibacterial activity against PL. In this study, six different caffeic acid esters were synthesized, purified, spectroscopically analyzed, and tested for their activity against PL to determine the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). Caffeic acid isopropenyl ester (CAIE), caffeic acid benzyl ester (CABE), and caffeic acid phenethyl ester (CAPE) were the most effective in inhibiting PL growth and killing PL cell with MICs and MBCs of 125 µg/mL when used individually, and a MIC and MBC of 31.25 µg/mL for each compound alone when CAIE, CABE, and CAPE are used in combination against PL. These compounds inhibited bacterial growth through a bactericidal effect, which revealed cell killing but no lysis of PL cells after 18 h. Incubation with CAIE, CABE, and CAPE at their MICs significantly increased reactive oxygen species levels and significantly changed glutathione levels within PL cells. Caffeic acid esters are potent bactericidal compounds against PL and eliminate bacterial growth through an oxidative stress mechanism.


FEBS Letters ◽  
1993 ◽  
Vol 329 (1-2) ◽  
pp. 21-24 ◽  
Author(s):  
G.F. Sud'ina ◽  
O.K. Mirzoeva ◽  
M.A. Pushkareva ◽  
G.A. Korshunova ◽  
N.V. Sumbatyan ◽  
...  

2008 ◽  
Vol 86 (5) ◽  
pp. 279-287 ◽  
Author(s):  
Ting Wang ◽  
Lixiang Chen ◽  
Weimin Wu ◽  
Yuan Long ◽  
Rui Wang

Oxidative stress is considered to be a major cause of cellular injuries in a variety of chronic health problems, such as carcinogenesis and neurodegenerative disorders. Caffeic acid phenethyl ester (CAPE), derived from the propolis of honeybee hives, possesses a variety of biological and pharmacological properties including antioxidant and anticancer activity. In the present study, we focused on the diverse antioxidative functionalities of CAPE and its related polyphenolic acid esters on cellular macromolecules in vitro. The effects on human erythrocyte membrane ghost lipid peroxidation, plasmid pBR322 DNA, and protein damage initiated by the water-soluble initiator 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH) and hydrogen peroxide (H2O2) were monitored by formation of hydroperoxides and by DNA nicking assay, single-cell alkaline electrophoresis, and SDS-polyacrylamide gel electrophoresis. Our results showed that CAPE and its related polyphenolic acid esters elicited remarkable inhibitory effects on erythrocyte membrane lipid peroxidation, cellular DNA strand breakage, and protein fragmentation. The results suggest that CAPE is a potent exogenous cytoprotective and antigenotoxic agent against cell oxidative damage that could be used as a template for designing novel drugs to combat diseases induced by oxidative stress components, such as various types of cancer.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Luana Chiquetto Paracatu ◽  
Carolina Maria Quinello Gomes Faria ◽  
Camila Quinello ◽  
Camila Rennó ◽  
Patricia Palmeira ◽  
...  

Numerous anti-inflammatory properties have been attributed to caffeic acid phenethyl ester (CAPE), an active component of propolis. NADPH oxidases are multienzymatic complexes involved in many inflammatory diseases. Here, we studied the importance of the CAPE hydrophobicity on cell-free antioxidant capacity, inhibition of the NADPH oxidase and hypochlorous acid production, and release of TNF-α and IL-10 by activated leukocytes. The comparison was made with the related, but less hydrophobic, caffeic and chlorogenic acids. Cell-free studies such as superoxide anion scavenging assay, triene degradation, and anodic peak potential(Epa)measurements showed that the alterations in the hydrophobicity did not provoke significant changes in the oxidation potential and antiradical potency of the tested compounds. However, only CAPE was able to inhibit the production of superoxide anion by activated leukocytes. The inhibition of the NADPH oxidase resulted in the blockage of production of hypochlorous acid. Similarly, CAPE was the more effective inhibitor of the release of TNF-α and IL-10 byStaphylococcus aureusstimulated cells. In conclusion, the presence of the catechol moiety and the higher hydrophobicity were essential for the biological effects. Considering the involvement of NADPH oxidases in the genesis and progression of inflammatory diseases, CAPE should be considered as a promising anti-inflammatory drug.


1989 ◽  
Vol 76 (9) ◽  
pp. 426-427 ◽  
Author(s):  
H. -T. Stüwe ◽  
G. Bruhn ◽  
W. A. König ◽  
B. M. Hausen

2016 ◽  
Vol 89 (4) ◽  
pp. 514-528 ◽  
Author(s):  
Jérémie A. Doiron ◽  
Luc M. Leblanc ◽  
Martin J. G. Hébert ◽  
Natalie A. Levesque ◽  
Aurélie F. Paré ◽  
...  

ChemInform ◽  
1990 ◽  
Vol 21 (3) ◽  
Author(s):  
H.-T. STUEWE ◽  
G. BRUHN ◽  
W. A. KOENIG ◽  
B. M. HAUSEN

Sign in / Sign up

Export Citation Format

Share Document