scholarly journals A New Dynamic Multicriteria Decision-Making Approach for Green Supplier Selection in Construction Projects under Time Sequence

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shi Yin ◽  
Baizhou Li ◽  
Hengmin Dong ◽  
Zeyu Xing

Nowadays, due to the lack of natural resources and environment problems which have been appearing increasingly, green building is more and more involved in the construction industry. The evaluation and selection of green supplier are a significant part of the development of green building. In this paper, we propose a new dynamic multicriteria decision-making approach in construction projects under time sequence to deal with these problems. First, the paper establishes 4 main criteria and 17 subcriteria for green supplier selection in construction projects. Then, a method considering interaction between criteria and the influence of constructors subjective preference and objective criteria information is proposed. It uses the interval-valued intuitionistic fuzzy geometric weighted Heronian means (IVIFGWHM) operator and multitarget nonlinear programming model to calculate the comprehensive evaluation results of potential green suppliers. The proposed method is much easier for constructors to select green supplier and make the localization of green supplier more practical and accurate in construction projects. Finally, a case study about a green building project is given to verify practicality and effectiveness of the proposed approach.

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Xia Cao ◽  
Zeyu Xing ◽  
Yuqi Sun ◽  
Shi Yin

Due to the lack of natural resources and environmental problems which have been appearing increasingly, low-carbon buildings are more and more involved in the construction industry. The selection of low-carbon supplier is a significant part in the process of low-carbon building construction projects. In this paper, we propose a novel dynamic multicriteria decision-making approach for low-carbon supplier selection in the process of low-carbon building construction projects to deal with these problems. First, the paper establishes 5 main criteria and 17 subcriteria for low-carbon supplier selection in the process of low-carbon building construction projects. Then, a method considering interaction between criteria and the influence of constructors subjective preference and objective criteria information is proposed. It uses the basic concept and properties of the interval-valued triangular fuzzy number intuitionistic fuzzy weighted Bonferroni means (IVTFNIFWBM) operators and the objective information entropy and TOPSIS-based Euclidean distance to calculate the comprehensive evaluation results of potential low-carbon suppliers. The proposed method is much easier for constructors to select low-carbon supplier and make the localization of low-carbon supplier more practical and accurate in the process of building construction projects. Finally, a case study about a low-carbon building project is given to verify practicality and effectiveness of the proposed approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qinghua Pang ◽  
Tiantian Yang ◽  
Mingzhen Li ◽  
Yi Shen

Due to the increasing awareness of global warming and environmental protection, many practitioners and researchers have paid much attention to the low-carbon supply chain management in recent years. Green supplier selection is one of the most critical activities in the low-carbon supply chain management, so it is important to establish the comprehensive criteria and develop a method for green supplier selection in low-carbon supply chain. The paper proposes a fuzz-grey multicriteria decision making approach to deal with these problems. First, the paper establishes 4 main criteria and 22 subcriteria for green supplier selection. Then, a method integrating fuzzy set theory and grey relational analysis is proposed. It uses the membership function of normal distribution to compare each supplier and uses grey relation analysis to calculate the weight of each criterion and improves fuzzy comprehensive evaluation. The proposed method can make the localization of individual green supplier more objectively and more accurately in the same trade. Finally, a case study in the steel industry is presented to demonstrate the effectiveness of the proposed approach.


Author(s):  
Jian Li ◽  
Li-li Niu ◽  
Qiongxia Chen ◽  
Zhong-xing Wang

AbstractHesitant fuzzy preference relations (HFPRs) have been widely applied in multicriteria decision-making (MCDM) for their ability to efficiently express hesitant information. To address the situation where HFPRs are necessary, this paper develops several decision-making models integrating HFPRs with the best worst method (BWM). First, consistency measures from the perspectives of additive/multiplicative consistent hesitant fuzzy best worst preference relations (HFBWPRs) are introduced. Second, several decision-making models are developed in view of the proposed additive/multiplicatively consistent HFBWPRs. The main characteristic of the constructed models is that they consider all the values included in the HFBWPRs and consider the same and different compromise limit constraints. Third, an absolute programming model is developed to obtain the decision-makers’ objective weights utilizing the information of optimal priority weight vectors and provides the calculation of decision-makers’ comprehensive weights. Finally, a framework of the MCDM procedure based on hesitant fuzzy BWM is introduced, and an illustrative example in conjunction with comparative analysis is provided to demonstrate the feasibility and efficiency of the proposed models.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
M. Ammar Alzarrad ◽  
Gary P. Moynihan ◽  
Muhammad T. Hatamleh ◽  
Siyuan Song

As is often the case in project scheduling, when the project duration is shortened to decrease total cost, the total float is lost resulting in added critical or nearly critical activities. This, in turn, results in decreasing the probability of completing the project on time and increases the risk of schedule delays. To solve this problem, this research developed a fuzzy multicriteria decision-making (FMCDM) model. The objective of this model is to help project managers improve their decisions regarding time-cost-risk trade-offs (TCRTO) in construction projects. In this model, an optimization algorithm based on fuzzy logic and analytic hierarchy process (AHP) has been used to analyze the time-cost-risk trade-off alternatives and select the best one based on selected criteria. The algorithm was implemented in the MATLAB software and applied to two case studies to verify and validate the presented model. The presented FMCDM model could help produce a more reliable schedule and mitigate the risk of projects running overbudget or behind schedule. Further, this model is a powerful decision-making instrument to help managers reduce uncertainties and improve the accuracy of time-cost-risk trade-offs. The presented FMCDM model employed fuzzy linguistic terms, which provide decision-makers with the opportunity to give their judgments as intervals comparing to fixed value judgments. In conclusion, the presented FMCDM model has high robustness, and it is an attractive alternative to the traditional methods to solve the time-cost-risk trade-off problem in construction.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Nadia Jamil ◽  
Rosli Besar ◽  
H. K. Sim

This paper is designed to present the effectiveness of group multicriteria decision making in automotive manufacturing company focusing on the selection of suppliers in Malaysia. The process of selecting suppliers is one of the most critical and challenging endeavor in any supply chain management. There are five decision making tools being analyzed in this study, namely, analytical hierarchy process (AHP), fuzzy analytical hierarchy process (FAHP), technique for order performance by similarity to ideal solution (TOPSIS), fuzzy technique for order performance by similarity to ideal solution (FTOPSIS), and fuzzy analytical hierarchy process integrated with fuzzy technique for order performance by similarity to ideal solution (FAHPiFTOPSIS). The scores of ranking among the suppliers in each MCDM tools (AHP, FAHP, TOPSIS, FTOPSIS, and FAHPiFTOPSIS) show significantly comparable variation. Scores of the best supplier is then compared to the lowest supplier for all MCDM tools whereby this reflects that the highest percentage goes to TOPSIS with scoring of 79.37%. On the contrary, FAHPiFTOPSIS demonstrated the lowest score variation of 22.42% which indicates that FAHPiFTOPSIS is able to eliminate biasness in supplier selection process.


2020 ◽  
Vol 10 (3) ◽  
pp. 437-452 ◽  
Author(s):  
Payam Shojaei ◽  
Ana bolvardizadeh

PurposeThe construction industry has a significant function in improving the quality of life in the urban environment; meanwhile, greening the supply chain is becoming a seriously pressing issue in the construction industry. This paper seeks to select green suppliers in construction projects implemented at Iranian state universities via multicriteria decision-making (MCDM) models through rough set theory.Design/methodology/approachA mixed methodology design was conducted through a literature review of studies concerned with green suppliers to identify the related criteria and the rough MCDM techniques. As such, 15 criteria were finalized through content validity ratio (introduced by Lawshe, 1975). The weights of the criteria were calculated through the rough AHP and the suppliers were prioritized using the rough TOPSIS to contribute to the Construction Department.FindingsThe study proposed a hierarchical structure of the decision process for green supplier selection in construction projects. According to the weighting results, environmental awareness, green social responsibility and the environmental management system were the most important criteria.Research limitations/implicationsBecause the scope of the study was limited to state universities and the methods worked according to the experts' views, the results should be generalized with more caution. The validity of the results should be examined by applying the model to similar contexts.Originality/valueThe study conceptualizes green supplier selection in construction projects at state universities. Furthermore, the method used makes it possible to deal with the uncertainty arising from experts' limited awareness of only part of the problem rather than the whole system under investigation.


Sign in / Sign up

Export Citation Format

Share Document