Reliable Flying IoT Networks for UAV Disaster Rescue Operations
Recently, UAVs (unmanned air vehicles) have been developed with high performance, and hence, the range of system utilizing UAVs has also been widening. UAVs are even considered as connected mobile sensors and are claimed to be the future of IoT (Internet of Things). UAVs’ mission fulfillment is relying on the efficiency and performance of communication in a FANET (Flying Ad hoc NETwork) environment where UAVs communicate with each other through an ad hoc network without infrastructure. Especially, for mission-critical applications such as disaster rescue operations, reliable and on-time transmission of rescue information is very critical. To develop the reliable FANETs, a realistic network simulation platform for UAV communication has become an important role. Motivated by this observation, this paper first presents a study on realistic FANET environment simulation platform. On top of the proposed platform, we also design a stable UAV communication protocol with high packet delivery and bounded end-to-end communication delay.