scholarly journals Position Tracking Control for Permanent Magnet Linear Motor via Continuous-Time Fast Terminal Sliding Mode Control

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xin Ma ◽  
Yeguo Sun ◽  
Fang Zhu

Based on disturbance observer, this paper develops a nonsingular terminal sliding mode control method for uncertain chaotic gyroscope system. Firstly, fuzzy logic system (FLS) is used to estimate the unknown function; then disturbance observer (DOB) is constructed to estimate the mixed disturbance, which consists of the fuzzy estimation error, external disturbance, and dead-zone input error. Subsequently, by using a nonsingular terminal sliding mode function, the control method proposed in this paper can achieve the sliding mode variable approaching a small neighborhood of zero and reduce chattering phenomenon of the tracking error and controller. Finally, comparative simulation results confirm the effectiveness of the method proposed in this paper.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yaobin Song ◽  
Hui Li ◽  
Xiaoling Shi

To facilitate the stabilization of nonlinear underactuated robotic systems under perturbation, a novel nonsingular fast terminal sliding mode control method is proposed. Based on the system transformation into an integrator chain, the combination of twisting-like algorithm and a nonsingular fast terminal sliding mode control technique is employed to achieve the stabilization of the studied systems, which can drive the robot states (joint positions and velocities) to the desired region and then maintain the system at the equilibrium point in finite time. The robustness of the proposed method is validated by the Lyapunov direct method. Finally, numerical simulation results further demonstrate that the proposed method has better performance on the convergent speed of the system state (robot joint positions and velocities) than state-of-the-art methods, especially for the underactuated joints.


Author(s):  
Cong Cheng ◽  
◽  
Ru Lai ◽  
Zhen Chen ◽  
Xiangdong Liu

This paper presents an adaptive nonsingular terminal sliding mode control algorithm with a modified switch function for a 6-DOF manipulator with unknown modeling errors and external disturbances. The finitetime convergence of the controller is analyzed using Lyapunov stability theory. The algorithm avoids singular problems and estimates the upper bound of system uncertainties. A modified switch function is used to achieve precise tracking and reduce chattering in control torque. Finally, the effectiveness of the control method is verified through simulation.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6532
Author(s):  
Wenlong Feng ◽  
Xiangyin Zhang

A neural network-based global fast terminal sliding mode control method with non-linear differentiator (NNFTSMC) is proposed in this paper to design the dynamic control system for three-axis stabilized platform. The dynamic model of the three-axis stabilized platform is established with various uncertainties and unknown external disturbances. To overcome the external disturbance and reduce the output chatter of the classical sliding mode control (SMC) system, the improved global fast terminal sliding mode control method using the nonlinear differentiator and neural network techniques is proposed and implemented in the three-axis stabilized platform system. The global fast terminal sliding mode controller can make the controlled state approach to the sliding surface in a finite time. To eliminate the system output chatter, the nonlinear differentiator is employed to obtain the differentiation of the signal. The neural network is introduced to estimate the uncertainties disturbances to improve the stability and the robustness of the control system. The stability and the robustness of the proposed control method are analyzed using the Lyapunov theory. The performance of the proposed NNFTSMC method is verified and compared with the classical proportion-integral-differential (PID) controller, SMC controller and fast terminal sliding mode controller (FTSMC) through the computer simulation. Results validate the effectiveness and robustness of the proposed NNFTSMC method in presence of uncertainties and unknown external disturbances.


Sign in / Sign up

Export Citation Format

Share Document