scholarly journals Auricular Cartilage Regeneration with Adipose-Derived Stem Cells in Rabbits

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Se-Joon Oh ◽  
Hee-Young Park ◽  
Kyung-Un Choi ◽  
Sung-Won Choi ◽  
Sung-Dong Kim ◽  
...  

Tissue engineering cell-based therapy using induced pluripotent stem cells and adipose-derived stem cells (ASCs) may be promising tools for therapeutic applications in tissue engineering because of their abundance, relatively easy harvesting, and high proliferation potential. The purpose of this study was to investigate whether ASCs can promote the auricular cartilage regeneration in the rabbit. In order to assess their differentiation ability, ASCs were injected into the midportion of a surgically created auricular cartilage defect in the rabbit. Control group was injected with normal saline. After 1 month, the resected auricles were examined histopathologically and immunohistochemically. The expression of collagen type II and transforming growth factor-β1 (TGF-β1) were analyzed by quantitative polymerase chain reaction. Histopathology showed islands of new cartilage formation at the site of the surgically induced defect in the ASC group. Furthermore, Masson’s trichrome staining and immunohistochemistry for S-100 showed numerous positive chondroblasts. The expression of collagen type II and TGF-β1 were significantly higher in the ASCs than in the control group. In conclusion, ASCs have regenerative effects on the auricular cartilage defect of the rabbit. These effects would be expected to contribute significantly to the regeneration of damaged cartilage tissue in vivo.

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 559
Author(s):  
Shun-Cheng Wu ◽  
Chih-Hsiang Chang ◽  
Ling-Hua Chang ◽  
Che-Wei Wu ◽  
Jhen-Wei Chen ◽  
...  

Directing adipose-derived stem cells (ADSCs) toward chondrogenesis is critical for ADSC-based articular cartilage regeneration. Simvastatin (SIM) was reported to promote both chondrogenic and osteogenic differentiation of ADSCs by upregulating bone morphogenetic protein-2 (BMP-2). We previously found that ADSC chondrogenesis is initiated and promoted in a hyaluronan (HA) microenvironment (HAM). Here, we further hypothesized that SIM augments HAM-induced chondrogenesis but not osteogenesis of ADSCs. ADSCs were treated with SIM in a HAM (SIM plus HAM) by HA-coated wells or HA-enriched fibrin (HA/Fibrin) hydrogel, and chondrogenic differentiation of ADSCs was evaluated. SIM plus HAM increased chondrogenesis more than HAM or SIM alone, including cell aggregation, chondrogenic gene expression (collagen type II and aggrecan) and cartilaginous tissue formation (collagen type II and sulfated glycosaminoglycan). In contrast, SIM-induced osteogenesis in ADSCs was reduced in SIM plus HAM, including mRNA expression of osteogenic genes, osteocalcin and alkaline phosphatase (ALP), ALP activity and mineralization. SIM plus HAM also showed the most effective increases in the mRNA expression of BMP-2 and transcription factors of SOX-9 and RUNX-2 in ADSCs, while these effects were reversed by CD44 blockade. HAM suppressed the levels of JNK, p-JNK, P38 and p-P38 in ADSCs, and SIM plus HAM also decreased SIM-induced phosphorylated JNK and p38 levels. In addition, SIM enhanced articular cartilage regeneration, as demonstrated by implantation of an ADSCs/HA/Fibrin construct in an ex vivo porcine articular chondral defect model. The results from this study indicate that SIM may be an enhancer of HAM-initiated MSC-based chondrogenesis and avoid osteogenesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Se-Joon Oh ◽  
Kyung-Un Choi ◽  
Sung-Won Choi ◽  
Sung-Dong Kim ◽  
Soo-Keun Kong ◽  
...  

Adipose-derived stromal cells (ADSCs) can repair auricular cartilage defects. Furthermore, stem cell secretome may also be a promising biological therapeutic option, which is equal to or even superior to the stem cell. We explored the therapeutic efficacies of ADSCs and their secretome in terms of rabbit auricular cartilage regeneration. ADSCs and their secretome were placed into surgically created auricular cartilage defects. After 4 and 8 weeks, the resected auricles were histopathologically and immunohistochemically examined. We used real-time PCR to determine the levels of genes expressing collagen type II, transforming growth factor-β1 (TGF-β1), and insulin-like growth factor-1 (IGF-1). ADSCs significantly improved auricular cartilage regeneration at 4 and 8 weeks, compared to the secretome and PBS groups, as revealed by gross examination, histopathologically and immunohistochemically. ADSCs upregulated the expression of collagen type II, TGF-β1, and IGF-1 more so than did the secretome or PBS. The expression levels of collagen type II and IGF-1 were significantly higher at 8 weeks than at 4 weeks after ADSC injection. Although ADSCs thus significantly enhanced new cartilage formation, their secretome did not. Therefore, ADSCs may be more effective than their secretome in the repair of auricular cartilage defect.


Author(s):  
Zeinolabedin Sharifian ◽  
Batool Hashemibeni ◽  
Majid Pourentezari ◽  
Ali Valiani ◽  
Mohammad Mardani ◽  
...  

Background and Aims: Tissue engineering is a relatively novel field that has been intensely developing during recent years and has shown to be excessively promising when used for cartilage regeneration. Scaffolds represent important components for tissue engineering. Materials and Methods: The Poly Lactic-Co-Glycolic Acid (PLGA) impregnated with fibrin and hyaluronic acid (HA) produce hybrid scaffolds. human adipose-derived stem cells (hADSCs) were seeded in scaffolds and cultured in chondrogenic media. The viability of cells in different groups was assessed by MTT. The expression of chondrogenic related genes [Sox9, type II collagen (Col II), Aggrecan(AGG)] and type X collagen (Col X) was quantified by real-time polymerase chain reaction. Results: The results of the real-time PCR showed SOX9, AGG and Col X gene expression in the control groups being significantly lower than the other groups (p≤0.05). It also demonstrated Col II gene expression in the control group being significantly lower than the PLGA/Fibrin and PLGA/Fibrin/HA groups (p≤0.05). The Col X gene expression of cells in PLGA/HA and PLGA/Fibrin/HA groups significantly decreased in comparison with the PLGA/Fibrin group (p≤0.05). Conclusions: These conclusions indicate that administration of PLGA/ Fibrin and PLGA/HA scaffolds, particularly PLGA/Fibrin/ HA, motivates chondrogenesis in hADSCs. This can be diminished by decreasing hypertrophic markers and increasing characteristic markers of hyaline cartilage.


2015 ◽  
Vol 308 (9) ◽  
pp. C685-C696 ◽  
Author(s):  
Shun-Cheng Wu ◽  
Hsu-Feng Hsiao ◽  
Mei-Ling Ho ◽  
Yung-Li Hung ◽  
Je-Ken Chang ◽  
...  

Effectively directing the chondrogenesis of adipose-derived stem cells (ADSCs) to engineer articular cartilage represents an important challenge in ADSC-based articular cartilage tissue engineering. The discoidin domain receptor 1 (DDR1) has been shown to affect cartilage homeostasis; however, little is known about the roles of DDR1 in ADSC chondrogenesis. In this study, we used the three-dimensional culture pellet culture model system with chondrogenic induction to investigate the roles of DDR1 in the chondrogenic differentiation of human ADSCs (hADSCs). Real-time polymerase chain reaction and Western blot were used to detect the expression of DDRs and chondrogenic genes. Sulfated glycosaminoglycan (sGAG) was detected by Alcian blue and dimethylmethylene blue (DMMB) assays. Terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to assess cell death. During the chondrogenesis of hADSCs, the expression of DDR1 but not DDR2 was significantly elevated. The depletion of DDR1 expression in hADSCs using short hairpin RNA increased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and cartilaginous matrix deposition (collagen type II and sGAG) and only slightly increased cell death (2–8%). DDR1 overexpression in hADSCs decreased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and sGAG and enhanced hADSC survival. Moreover, DDR1-depleted hADSCs showed decreased expression of the terminal differentiation genes runt-related transcription factor 2 (Runx2) and matrix metalloproteinase 13 (MMP-13). These results suggest that DDR1 suppression may enhance ADSC chondrogenesis by enhancing the expression of chondrogenic genes and cartilaginous matrix deposition. We proposed that the suppression of DDR1 in ADSCs may be a candidate strategy of genetic modification to optimize ADSC-based articular cartilage tissue engineering.


Cartilage ◽  
2021 ◽  
pp. 194760352098815
Author(s):  
Chen-Chie Wang ◽  
Ing-Ho Chen ◽  
Ya-Ting Yang ◽  
Yi-Ru Chen ◽  
Kai-Chiang Yang

Objective Adipose tissue–derived stem cells (ASCs) are a promising source of cells for articular cartilage regeneration. However, ASCs isolated from different adipose tissue depots have heterogeneous cell characterizations and differentiation potential when cultured in 3-dimensional (3D) niches. Design We compared the chondrogenicity of ASCs isolated from infrapatellar fat pads (IPFPs) and subcutaneous fat pads (SCFPs) in 3D gelatin-based biomimetic matrix. Results The IPFP-ASC-differentiated chondrocytes had higher ACAN, COL2A1, COL10, SOX6, SOX9, ChM-1, and MIA-3 mRNA levels and lower COL1A1 and VEGF levels than the SCFP-ASCs in 3D matrix. The difference in mRNA profile may have contributed to activation of the Akt, p38, RhoA, and JNK signaling pathways in the IPFP-ASCs. The chondrocytes differentiated from IPFP-ASCs had pronounced glycosaminoglycan and collagen type II production and a high chondroitin-6-sulfate/chondroitin-4-sulfate ratio with less polymerization of β-actin filaments. In an ex vivo mice model, magnetic resonance imaging revealed a shorter T2 relaxation time, indicating that more abundant extracellular matrix was secreted in the IPFP-ASC–matrix group. Histological examinations revealed that the IPFP-ASC matrix had higher chondrogenic efficacy of new cartilaginous tissue generation as evident in collagen type II and S-100 staining. Conclusion. ASCs isolated from IPFPs may be better candidates for cartilage regeneration, highlighting the translational potential of cartilage tissue engineering using the IPFP-ASC matrix technique.


2013 ◽  
Vol 114 (11) ◽  
pp. 1610-1618 ◽  
Author(s):  
Shun-Cheng Wu ◽  
Chung-Hwan Chen ◽  
Je-Ken Chang ◽  
Yin-Chih Fu ◽  
Chih-Kuang Wang ◽  
...  

Cell-matrix adhesion is one of the important interactions that regulates stem cell survival, self-renewal, and differentiation. Our previous report (Wu SC, Chang JK, Wang CK, Wang GJ, Ho ML. Biomaterials 31: 631–640, 2010) indicated that a microenvironment enriched with hyaluronan (HA) initiated and enhanced chondrogenesis in human adipose-derived stem cells (hADSCs). We further hypothesize that HA-induced chondrogenesis in hADSCs is mainly due to the interaction of HA and CD44 (HA-CD44), a cell surface receptor of HA. The HA-CD44 interaction was tested by examining the mRNA expression of hyaluronidase-1 (Hyal-1) and chondrogenic marker genes (SOX-9, collagen type II, and aggrecan) in hADSCs cultured on HA-coated wells. Cartilaginous matrix formation, sulfated glycosaminoglycan, and collagen productions by hADSCs affected by HA-CD44 interaction were tested in a three-dimensional fibrin hydrogel. About 99.9% of hADSCs possess CD44. The mRNA expressions of Hyal-1 and chondrogenic marker genes were upregulated by HA in hADSCs on HA-coated wells. Blocking HA-CD44 interaction by anti-CD44 antibody completely inhibited Hyal-1 expression and reduced chondrogenic marker gene expression, which indicates that HA-induced chondrogenesis in hADSCs mainly acts through HA-CD44 interaction. A 2-h preincubation and coculture of cells with HA in hydrogel (HA/fibrin hydrogel) not only assisted in hADSC survival, but also enhanced expression of Hyal-1 and chondrogenic marker genes. Higher levels of sulfated glycosaminoglycan and total collagen were also found in HA/fibrin hydrogel group. Immunocytochemistry showed more collagen type II, but less collagen type X, in HA/fibrin than in fibrin hydrogels. Our results indicate that signaling triggered by HA-CD44 interaction significantly contributes to HA-induced chondrogenesis and may be applied to adipose-derived stem cell-based cartilage regeneration.


Author(s):  
Adrianto Prasetyo Perbowo ◽  
Dwikora Novembri Utomo ◽  
Lukas Widhiyanto ◽  
Primadenny Ariesa Airlangga ◽  
Purwati Purwati

Abstract Cell-based therapies such as Scaffold, stem cells, and secretome, are one of the alternatives to enhance the regeneration of hyaline-like cartilage in cases of cartilage defects. This study is an in-vivo experiment using animal models, in which we apply a composite of DFLP (Dwikora-Ferdiansyah-Lesmono-Purwati) Scaffold and Adipose-Derived Stem Cells (ASCs) or Secretome to an injury model on the distal femoral trochlea of New Zealand White Rabbits. The animals were divided into four groups: (1) control (K); (2) Scaffold only (S); (3) Scaffold + ASCs (SA); (4) Scaffold + Secretome (SS). Animals were terminated in the 12th week, and an immunohistochemistry (IHC) evaluation for Collagen type I and II were done. Statistical analysis shows that collagen type I IHC between groups shows no significant difference (p = 0.546). Collagen type II IHC shows significant difference between groups (p = 0,016). The findings in this study showed that Scaffold + ASCs group and Scaffold + Secretome have better collagen type II expression compared to the control group. DFLP Scaffold composite with ASCs or Secretome shows potential for cartilage regeneration therapy by increasing type II collagen expression as in hyaline-like cartilage which may be used for regenerative therapy for cartilage defects. Keywords             : DFLP Scaffold; Adipose-Derived Stem Cells (ASCs); Secretome; Collagen Type I; Collagen Type IICorrespondence    : [email protected]


2018 ◽  
Vol 12 (5) ◽  
pp. 35-40
Author(s):  
Hossein Rafiei ◽  
◽  
Milad Ashrafizadeh ◽  

Background: Lead is one of the sustainable metals with devastating effects on many tissues. This study, examined the adverse effect of lead poisoning on the gene expression of collagen type II and osteocalcin by mesenchymal stem cells (MSCs) cultured in chondrogenic and osteogenic media, respectively. Methods: We used 18 male Wistar rats, divided in 3 groups. In addition to libitum feed as the control, treatment I and treatment II groups were fed by distilled water, distilled water with a dose of 50 ppm lead acetate II and distilled water with a dose of 100 ppm lead acetate II, respectively, over a 2-month period. The MSCs of rat femur were isolated in DMEM medium. After the second passage, the media were replaced separately with chondrogenic and osteogenic media over another 21 days. Then, Collagen Type II and Osteocalcin genes expression were investigated by real time PCR. Results: Collagen Type II and Osteocalcin genes expression in treatments I and II groups showed meaningful decreases compared with that of the control group. Also, the concentration of collagen type II in treatment II group in chondrogenic medium was significantly reduced compared with Osteocalcin concentration in osteogenic medium. Conclusion: We found that poisoning with lead and its accumulation at doses of 50 and 100 ppm in femoral bone marrow of rats decreased the expression of the collagen type II and osteocalcin genes in MSCs and in the chondrogenic and osteogenic media, respectively.


Cartilage ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 410-416 ◽  
Author(s):  
Timea Spakova ◽  
Judita Amrichova ◽  
Jana Plsikova ◽  
Denisa Harvanova ◽  
Slavomir Hornak ◽  
...  

Objective This study aimed to compare microfracture and application of adipose-derived stem cells (ADSCs) by local adherent technique enhanced by platelet-rich plasma (PRP) to provide a new approach for the repair of cartilage defect. Design Full-thickness cylindrical defects were created in the medial femoral condyle in 9 New Zealand White rabbits (5 months old, 4.65 ± 0.20 kg). Two groups of rabbits ( n = 3) were either treated with ADSCs (Group 1) or the microfracture technique (Group 2) following intraarticular injection of PRP 3 times in weekly intervals. Rabbits in control group ( n = 3) remained untreated. The outcome was assessed macroscopically, histologically, and immunohistochemically. Results At the end of week 12, Group 1 showed better defect filling compared with Group 2. Specimens treated with the combination of ADSCs and PRP exhibited significant differences from the other groups in all criteria of International Cartilage Repair Society macroscopic scoring system. Conclusions Intraarticular injection of autologous PRP in combination with transplantation of autologous ADSCs by local adherent technique enhances the quality of cartilage defect repair with better results in comparison with microfracture surgery in a rabbit model.


Cartilage ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 432-438 ◽  
Author(s):  
Laurie M. G. de Kroon ◽  
Esmeralda N. Blaney Davidson ◽  
Roberto Narcisi ◽  
Eric Farrell ◽  
Peter M. van der Kraan ◽  
...  

Objective Previously, we demonstrated the importance of transforming growth factor-β (TGFβ)-activated SMAD2/3 signaling in chondrogenesis of bone marrow–derived mesenchymal stem cells (BMSCs). However, TGFβ also signals via the SMAD1/5/9 pathway, which is known to induce terminal differentiation of BMSCs. In this study, we investigated whether other SMAD2/3-activating ligands, Activin and Nodal, can induce chondrogenic differentiation of BMSCs without inducing terminal differentiation. Design Activation of SMAD2/3 signaling and chondrogenesis were evaluated in human BMSCs ( N = 3 donors) stimulated with TGFβ, Activin, or Nodal. SMAD2/3 activation was assessed by determining phosphorylated-SMAD2 (pSMAD2) protein levels and SMAD2/3-target gene expression of SERPINE1. Chondrogenesis was determined by ACAN and COL2A1 transcript analysis and histological examination of proteoglycans and collagen type II. Results Both Activin and TGFβ enhanced pSMAD2 and SERPINE1 expression compared to the control condition without growth factors, demonstrating activated SMAD2/3 signaling. pSMAD2 and SERPINE1 had a higher level of expression following stimulation with TGFβ than with Activin, while Nodal did not activate SMAD2/3 signaling. Of the 3 ligands tested, only TGFβ induced chondrogenic differentiation as shown by strongly increased transcript levels of ACAN and COL2A1 and positive histological staining of proteoglycans and collagen type II. Conclusions Even with concentrations up to 25 times higher than that of TGFβ, Activin and Nodal do not induce chondrogenic differentiation of BMSCs; thus, neither of the 2 ligands is an interesting alternative candidate for TGFβ to induce chondrogenesis without terminal differentiation. To obtain stable cartilage formation by BMSCs, future studies should decipher how TGFβ-induced terminal differentiation can be prevented.


Sign in / Sign up

Export Citation Format

Share Document