scholarly journals Hopf Bifurcation and Hybrid Control of a Delayed Ecoepidemiological Model with Nonlinear Incidence Rate and Holling Type II Functional Response

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Miao Peng ◽  
Zhengdi Zhang ◽  
C. W. Lim ◽  
Xuedi Wang

Hopf bifurcation analysis of a delayed ecoepidemiological model with nonlinear incidence rate and Holling type II functional response is investigated. By analyzing the corresponding characteristic equations, the conditions for the stability and existence of Hopf bifurcation for the system are obtained. In addition, a hybrid control strategy is proposed to postpone the onset of an inherent bifurcation of the system. By utilizing normal form method and center manifold theorem, the explicit formulas that determine the direction of Hopf bifurcation and the stability of bifurcating period solutions of the controlled system are derived. Finally, some numerical simulation examples confirm that the hybrid controller is efficient in controlling Hopf bifurcation.

2009 ◽  
Vol 02 (02) ◽  
pp. 139-149 ◽  
Author(s):  
LINGSHU WANG ◽  
RUI XU ◽  
GUANGHUI FENG

A predator–prey model with time delay and Holling type-II functional response is investigated. By choosing time delay as the bifurcation parameter and analyzing the associated characteristic equation of the linearized system, the local stability of the system is investigated and Hopf bifurcations are established. The formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Juan Liu

This paper is concerned with a delayed SEIS (Susceptible-Exposed-Infectious-Susceptible) epidemic model with a changing delitescence and nonlinear incidence rate. First of all, local stability of the endemic equilibrium and the existence of a Hopf bifurcation are studied by choosing the time delay as the bifurcation parameter. Directly afterwards, properties of the Hopf bifurcation are determined based on the normal form theory and the center manifold theorem. At last, numerical simulations are carried out to illustrate the obtained theoretical results.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dipankar Ghosh ◽  
Prasun K. Santra ◽  
Abdelalim A. Elsadany ◽  
Ghanshaym S. Mahapatra

Abstract This paper focusses on developing two species, where only prey species suffers by a contagious disease. We consider the logistic growth rate of the prey population. The interaction between susceptible prey and infected prey with predator is presumed to be ruled by Holling type II and I functional response, respectively. A healthy prey is infected when it comes in direct contact with infected prey, and we also assume that predator-dependent disease spreads within the system. This research reveals that the transmission of this predator-dependent disease can have critical repercussions for the shaping of prey–predator interactions. The solution of the model is examined in relation to survival, uniqueness and boundedness. The positivity, feasibility and the stability conditions of the fixed points of the system are analysed by applying the linearization method and the Jacobian matrix method.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Peng Yang ◽  
Yuanshi Wang

This paper is devoted to the study of a new delayed eco-epidemiological model with infection-age structure and Holling type II functional response. Firstly, the disease transmission rate function among the predator population is treated as the piecewise function concerning the incubation period [Formula: see text] of the epidemic disease and the model is rewritten as an abstract nondensely defined Cauchy problem. Besides, the prerequisite which guarantees the presence of the coexistence equilibrium is achieved. Secondly, via utilizing the theory of integrated semigroup and the Hopf bifurcation theorem for semilinear equations with nondense domain, it is found that the model exhibits a Hopf bifurcation near the coexistence equilibrium, which suggests that this model has a nontrivial periodic solution that bifurcates from the coexistence equilibrium as the bifurcation parameter [Formula: see text] crosses the bifurcation critical value [Formula: see text]. That is, there is a continuous periodic oscillation phenomenon. Finally, some numerical simulations are shown to support and extend the analytical results and visualize the interesting phenomenon.


2018 ◽  
Vol 11 (06) ◽  
pp. 1850085 ◽  
Author(s):  
Divine Wanduku

A family of deterministic SEIRS epidemic dynamic models for malaria is presented. The family type is determined by a general functional response for the nonlinear incidence rate of the disease. Furthermore, the malaria models exhibit three random delays — the incubation periods of the plasmodium inside the female mosquito and human hosts, and also the period of effective acquired natural immunity against the disease. Insights about the effects of the delays and the nonlinear incidence rate of the disease on (1) eradication and (2) persistence of malaria in the human population are obtained via analyzing and interpreting the global asymptotic stability results of the disease-free and endemic equilibrium of the system. The basic reproduction numbers and other threshold values for malaria are calculated, and superior threshold conditions for the stability of the equilibria are found. Numerical simulation results are presented.


Sign in / Sign up

Export Citation Format

Share Document