scholarly journals Effects of Reinforcing Fiber and Microsilica on the Mechanical and Chloride Ion Penetration Properties of Latex-Modified Fiber-Reinforced Rapid-Set Cement Concrete for Pavement Repair

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Woong Kim ◽  
Jong-Chan Jeon ◽  
Byung-Hwan An ◽  
Joo-Ha Lee ◽  
Hae-Do Kim ◽  
...  

This study evaluated the influence of reinforcement fiber type and microsilica content on the performance of latex-modified fiber-reinforced roller-compacted rapid-hardening cement concrete (LMFRCRSC) for a concrete pavement emergency repair. Experimental variables were the microsilica substitution ratio (1, 2, 3, and 4%), and the reinforcement fiber (jute versus macrosynthetic fiber). In the tests, compressive, flexural, and splitting tensile strength; chloride ion penetration resistance; and abrasion resistance were assessed. From the compressive and flexural strength tests with microsilica substitution, the 4-hour curing strength decreased as the microsilica substitution ratio increased. From the chloride ion penetration test, as the microsilica substitution ratio increased, chloride ion penetration decreased. The abrasion resistances increased with the substitution ratio of microsilica increase. Based on these test results, microsilica at a substitution ratio of 3% or less and macrosynthetic fiber as the reinforcement improved the performance of LMFRCRSC for a concrete pavement emergency repair and satisfied all of the target strength requirements.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Woong Kim ◽  
Ri-On Oh ◽  
Joo-Ha Lee ◽  
Mi-Sol Kim ◽  
Sang-Min Jeon ◽  
...  

This study evaluated the performance of latex-modified fiber-reinforced concrete (RC) segments as a function of the substitution level of microsilica and type of reinforced fiber, to address the problem of corrosion of steel segments and steel-reinforced fiber segments, which are commonly used to shield tunnel-boring machine (TBM) tunnels in urban spaces. Our study compared macro synthetic, steel, and hybrid (macro synthetic fiber + polypropylene fiber) reinforcing fibers. The substitution levels of microsilica used were 0, 2, 4, and 6%. The target strengths were set at 40 and 60 MPa to test compressive strength, flexural strength, chloride ion penetration resistance, and impact resistance. Testing of latex-modified and fiber-reinforced segment concrete showed that the compressive strength, flexural strength, and chloride ion penetration resistance increased with an increasing substitution level of microsilica. These improvements were attributed to the densification of the concrete due to filling micropores with microsilica. Micro synthetic fiber was more effective in terms of improved compressive strength, flexural strength, and chloride ion penetration resistance than steel fiber. These results were due to the higher number of micro synthetic fibers per unit volume compared with steel fiber, which reduced the void volume and suppressed the development of internal cracks. The optimal microsilica content and fiber volume fraction of micro synthetic fiber were 6% and 1%, respectively. To evaluate the effects of the selected mixtures and hybrid fibers simultaneously, other mixing variables were fixed and a hybrid fiber mixture (combination of macro synthetic fibers and polypropylene fibers) was used. The hybrid fiber mixture produced better compressive strength, flexural strength, chloride ion penetration resistance, and impact resistance than the micro synthetic fibers.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3981
Author(s):  
Su-Jin Lee ◽  
Hyung-Jin Shin ◽  
Chan-Gi Park

This study evaluated the mechanical properties and durability performance of latex-modified hybrid fiber-reinforced roller-compacted rapid-set cement concrete (LMHFRCRSC) for emergency repair of concrete pavement. Experimental parameters included the blend ratio of the hybrid fiber, which comprised natural jute fiber (0–0.2 vol.%) and structural synthetic fiber (0–2 vol.%). The mechanical performance of LMHFRCRSC of various blend ratios was evaluated in terms of compressive, flexural, and splitting tensile strength. Durability assessment included chlorine ion penetration and abrasion resistance measurements. Compressive and flexural strength values of 21 and 3.5 MPa, respectively, were the set targets after 4 h of curing; a compressive strength of 35 MPa, a flexural strength of 4.5 MPa, a splitting tensile strength of 4.2 MPa, and chloride ion penetration of 2000 C or less were required after 28 days of curing. Our test results confirmed that all mix proportions satisfied the target values, regardless of the blend ratio of the hybrid fiber. Specifically, the mechanical performance of the concrete improved as the blend ratio of the structural synthetic fiber increased. With regard to durability, a greater amount of jute fiber, a hydrophilic fiber, enhanced the concrete’s durability. Additionally, incorporating jute fiber of 0.6 kg/m3 provided excellent chlorine ion penetration resistance. The optimal blend ratio for the hybrid fiber was natural jute fiber at 0.6 kg/m3 and structural synthetic fiber at 13.65 kg/m3 (mix: J0.6 + P13.65); with this mix proportion, a chloride ion penetration amount of 1000 C or less and maximum mechanical performance were achieved.


2015 ◽  
Vol 18 (2) ◽  
pp. 427-440 ◽  
Author(s):  
Rui Vasco Silva ◽  
Jorge de Brito ◽  
Rui Neves ◽  
Ravindra Dhir

2012 ◽  
Vol 591-593 ◽  
pp. 2422-2427
Author(s):  
Juan Zhao

Considering the complexity of the chloride ion penetration in concrete exposed to marine environment, an integrated chloride penetration model coupled with temperature and moisture transfer is proposed. The governing equations and parameters embody fully the cross-impacts among thermal conduction, moisture transfer and chloride ion penetration. Furthermore, the four exposure conditions are classified based on the different contact with the aggressive marine environment, and then the micro-climate condition on the concrete surface is investigated according to the regional climate characteristics, therefore, a comprehensive analog simulation to the chloride penetration process is proposed. To demonstrate that the proposed numerical model can correctly simulate the chloride diffusion in concrete, the integrated chloride diffusion model is applied in reproducing a real experiment, finally the model gives good agreement with the experimental profiles, and it is proved the tidal zone exposure results in a more severe attack on the reinforcement


Sign in / Sign up

Export Citation Format

Share Document