scholarly journals Strip Steel Surface Defects Recognition Based on SOCP Optimized Multiple Kernel RVM

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Hou Jingzhong ◽  
Xia Kewen ◽  
Yang Fan ◽  
Zu Baokai

Strip steel surface defect recognition is a pattern recognition problem with wide applications. Previous works on strip surface defect recognition mainly focus on feature selection and dimension reduction. There are also approaches on real-time systems that mainly exploit the autocorrection within some given picture. However, the instances cannot be used in practical applications because of a bad recognition rate and low efficiency. In this paper, we study the intelligent algorithm of strip steel surface defect recognition, where the goal is to improve the accuracy and save running time. This problem is very important in various applications, especially the process testing of steel manufacturing. We propose an approach called the second-order cone programming (SOCP) optimized multiple kernel relevance vector machine (MKRVM), which can recognize strip surface defects much better than other methods. The method includes the model parameter estimation, training, and optimization of the model based on SOCP and the classification test. We compare our approach with existing methods on strip surface defect recognition. The results demonstrate that our proposed approach can improve the recognition accuracy and reduce the time costs of the strip surface defect.

2021 ◽  
Vol 2082 (1) ◽  
pp. 012016
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

Abstract A new Vision Transformer(ViT) model is proposed for the classification of surface defects in hot rolled strip, optimizing the poor learning ability of the original Vision Transformer model on smaller datasets. Firstly, each module of ViT and its characteristics are analyzed; Secondly, inspired by the deep learning model VGGNet, the multilayer fully connected layer in VGGNet is introduced into the ViT model to increase its learning capability; Finally, by performing on the X-SDD hot-rolled steel strip surface defect dataset. The effect of the improved algorithm is verified by comparison experiments on the X-SDD hot-rolled strip steel surface defect dataset. The test results show that the improved algorithm achieves better results than the original model in terms of accuracy, recall, F1 score, etc. Among them, the accuracy of the improved algorithm on the test set is 5.64% higher than ViT-Base and 2.64% higher than ViT-Huge; the accuracy is 4.68% and 1.36% higher than both of them, respectively.


2018 ◽  
Vol 53 ◽  
pp. 01037
Author(s):  
Mi Zz ◽  
C Cong ◽  
Y Cheng ◽  
Zhang Hm

Aiming at the problems of low efficiency of traditional detection methods for surface defects of precision optical element and inconvenient detection for optical elements of different calibers, a adjustable optical element defects detecting device for large laser devices is designed. The key technical points of system composition, detection environment, illumination design and image stitching are expounded. According to the characteristics of surface defects of optical element, such as the difference of contour, gray scale, contrast and ambiguity, a classification method based on FCM is proposed. The experimental results show that the system can realize the automatic detection of surface defects, also it can effectively distinguishes micron-scale defects and has good defect recognition performance. The overall average recognition rate reached to 93.3%.


2016 ◽  
Vol 87 (12) ◽  
pp. 1678-1685 ◽  
Author(s):  
Rongfen Gong ◽  
Chengdong Wu ◽  
Maoxiang Chu ◽  
Xiaoping Liu

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

It is important to accurately classify the defects in hot rolled steel strip since the detection of defects in hot rolled steel strip is closely related to the quality of the final product. The lack of actual hot-rolled strip defect data sets currently limits further research on the classification of hot-rolled strip defects to some extent. In real production, the convolutional neural network (CNN)-based algorithm has some difficulties, for example, the algorithm is not particularly accurate in classifying some uncommon defects. Therefore, further research is needed on how to apply deep learning to the actual detection of defects on the surface of hot rolled steel strip. In this paper, we proposed a hot rolled steel strip defect dataset called Xsteel surface defect dataset (X-SDD) which contains seven typical types of hot rolled strip defects with a total of 1360 defect images. Compared with the six defect types of the commonly used NEU surface defect database (NEU-CLS), our proposed X-SDD contains more types. Then, we adopt the newly proposed RepVGG algorithm and combine it with the spatial attention (SA) mechanism to verify the effect on the X-SDD. Finally, we apply multiple algorithms to test on our proposed X-SDD to provide the corresponding benchmarks. The test results show that our algorithm achieves an accuracy of 95.10% on the testset, which exceeds other comparable algorithms by a large margin. Meanwhile, our algorithm achieves the best results in Macro-Precision, Macro-Recall and Macro-F1-score metrics.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4356 ◽  
Author(s):  
Chi-Yi Tsai ◽  
Hao-Wei Chen

This paper presents an improved Convolutional Neural Network (CNN) architecture to recognize surface defects of the Calcium Silicate Board (CSB) using visual image information based on a deep learning approach. The proposed CNN architecture is inspired by the existing SurfNet architecture and is named SurfNetv2, which comprises a feature extraction module and a surface defect recognition module. The output of the system is the recognized defect category on the surface of the CSB. In the collection of the training dataset, we manually captured the defect images presented on the surface of the CSB samples. Then, we divided these defect images into four categories, which are crash, dirty, uneven, and normal. In the training stage, the proposed SurfNetv2 is trained through an end-to-end supervised learning method, so that the CNN model learns how to recognize surface defects of the CSB only through the RGB image information. Experimental results show that the proposed SurfNetv2 outperforms five state-of-the-art methods and achieves a high recognition accuracy of 99.90% and 99.75% in our private CSB dataset and the public Northeastern University (NEU) dataset, respectively. Moreover, the proposed SurfNetv2 model achieves a real-time computing speed of about 199.38 fps when processing images with a resolution of 128 × 128 pixels. Therefore, the proposed CNN model has great potential for real-time automatic surface defect recognition applications.


2021 ◽  
Vol 11 (23) ◽  
pp. 11459
Author(s):  
Shiqing Wu ◽  
Shiyu Zhao ◽  
Qianqian Zhang ◽  
Long Chen ◽  
Chenrui Wu

The classification of steel surface defects plays a very important role in analyzing their causes to improve manufacturing process and eliminate defects. However, defective samples are very scarce in actual production, so using very few samples to construct a good classifier is a challenge to be addressed. If the layer number of the model with proper depth is increased, the model accuracy will decrease (not caused by overfit), and the training error as well as the test error will be very high. This is called the degradation problem. In this paper, we propose to use feature extraction + feature transformation + nearest neighbors to classify steel surface defects. In order to solve the degradation problem caused by network deepening, the three feature extraction networks of Residual Net, Mobile Net and Dense Net are designed and analyzed. Experiment results show that in the case of a small sample number, Dense block can better solve the degradation problem caused by network deepening than Residual block. Moreover, if Dense Net is used as the feature extraction network, and the nearest neighbor classification algorithm based on Euclidean metric is used in the new feature space, the defect classification accuracy can reach 92.33% when only five labeled images of each category are used as the training set. This paper is of some guiding significance for surface defect classification when the sample number is small.


Sign in / Sign up

Export Citation Format

Share Document