scholarly journals L-Cystathionine Protects against Homocysteine-Induced Mitochondria-Dependent Apoptosis of Vascular Endothelial Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xiuli Wang ◽  
Yi Wang ◽  
Lulu Zhang ◽  
Da Zhang ◽  
Lu Bai ◽  
...  

The study was aimed at investigating the effects of L-cystathionine on vascular endothelial cell apoptosis and its mechanisms. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. Apoptosis of vascular endothelial cells was induced by homocysteine. Apoptosis, mitochondrial superoxide anion, mitochondrial membrane potential, mitochondrial permeability transition pore (MPTP) opening, and caspase-9 and caspase-3 activities were examined. Expression of Bax, Bcl-2, and cleaved caspase-3 was tested and BTSA1, a Bax agonist, and HUVEC Bax overexpression was used in the study. Results showed that homocysteine obviously induced the apoptosis of HUVECs, and this effect was significantly attenuated by the pretreatment with L-cystathionine. Furthermore, L-cystathionine decreased the production of mitochondrial superoxide anion and the expression of Bax and restrained its translocation to mitochondria, increased mitochondrial membrane potential, inhibited mitochondrial permeability transition pore (MPTP) opening, suppressed the leakage of cytochrome c from mitochondria into the cytoplasm, and downregulated activities of caspase-9 and caspase-3. However, BTSA1, a Bax agonist, or Bax overexpression successfully abolished the inhibitory effect of L-cystathionine on Hcy-induced MPTP opening, caspase-9 and caspase-3 activation, and HUVEC apoptosis. Taken together, our results indicated that L-cystathionine could protect against homocysteine-induced mitochondria-dependent apoptosis of HUVECs.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Meifang Zhu ◽  
Wei Deng ◽  
Suhong Di ◽  
Mingming Qin ◽  
Dan Liu ◽  
...  

Gastrodin (GAS) is the major component isolated from the rhizome of the Chinese traditional medicinal herb “Tianma.” Many clinical studies have found that GAS protects cardiomyocytes in cardiovascular diseases, although the effects and underlying mechanisms on cardiovascular anoxia/reoxygenation (A/R) injury remain unknown. This study is aimed at exploring the effect of gastrodin on cardiomyocytes in A/R injury. Our results suggested that the protective effect of GAS on cardiomyocytes is associated with upregulated 14-3-3η levels. Pretreatment with GAS could increase the cell viability and decrease the activities of creatine phosphokinase (CPK) and lactate dehydrogenase (LDH). GAS could also reduce reactive oxygen species (ROS) production, inhibit mitochondrial permeability transition pore (mPTP) opening, alter the maintenance of the mitochondrial membrane potential (∆Ψm), decrease the activation of caspase-3, and finally restrain cell apoptosis. Downregulating 14-3-3η levels by transfection with siRNA14-3-3η clearly attenuated the protective effect of GAS on cardiomyocytes in A/R injury.


Author(s):  
Sergey V. Popov ◽  
Ekaterina S. Prokudina ◽  
Alexander V. Mukhomedzyanov ◽  
Natalia V. Naryzhnaya ◽  
Huijie Ma ◽  
...  

Despite the recent progress in research and therapy, cardiovascular diseases are still the most common cause of death worldwide, thus new approaches are still needed. The aim of this review is to highlight the cardioprotective potential of urocortins and corticotropin-releasing hormone (CRH) and their signaling. It has been documented that urocortins and CRH reduce ischemic and reperfusion (I/R) injury, prevent reperfusion ventricular tachycardia and fibrillation, and improve cardiac contractility during reperfusion. Urocortin-induced increase in cardiac tolerance to I/R depends mainly on the activation of corticotropin-releasing hormone receptor-2 (CRHR2) and its downstream pathways including tyrosine kinase Src, protein kinase A and C (PKA, PKCε) and extracellular signal-regulated kinase (ERK1/2). It was discussed the possibility of the involvement of interleukin-6, Janus kinase-2 and signal transducer and activator of transcription 3 (STAT3) and microRNAs in the cardioprotective effect of urocortins. Additionally, phospholipase-A2 inhibition, mitochondrial permeability transition pore (MPT-pore) blockade and suppression of apoptosis are involved in urocortin-elicited cardioprotection. Chronic administration of urocortin-2 prevents the development of postinfarction cardiac remodeling. Urocortin possesses vasoprotective and vasodilator effect; the former is mediated by PKC activation and prevents an impairment of endothelium-dependent coronary vasodilation after I/R in the isolated heart, while the latter includes both cAMP and cGMP signaling and its downstream targets. As CRHR2 is expressed by both cardiomyocytes and vascular endothelial cells. Urocortins mediate both endothelium-dependent and -independent relaxation of coronary arteries.


2010 ◽  
Vol 299 (2) ◽  
pp. C506-C515 ◽  
Author(s):  
Filip Sedlic ◽  
Ana Sepac ◽  
Danijel Pravdic ◽  
Amadou K. S. Camara ◽  
Martin Bienengraeber ◽  
...  

During reperfusion, the interplay between excess reactive oxygen species (ROS) production, mitochondrial Ca2+ overload, and mitochondrial permeability transition pore (mPTP) opening, as the crucial mechanism of cardiomyocyte injury, remains intriguing. Here, we investigated whether an induction of a partial decrease in mitochondrial membrane potential (ΔΨm) is an underlying mechanism of protection by anesthetic-induced preconditioning (APC) with isoflurane, specifically addressing the interplay between ROS, Ca2+, and mPTP opening. The magnitude of APC-induced decrease in ΔΨm was mimicked with the protonophore 2,4-dinitrophenol (DNP), and the addition of pyruvate was used to reverse APC- and DNP-induced decrease in ΔΨm. In cardiomyocytes, ΔΨm, ROS, mPTP opening, and cytosolic and mitochondrial Ca2+ were measured using confocal microscope, and cardiomyocyte survival was assessed by Trypan blue exclusion. In isolated cardiac mitochondria, antimycin A-induced ROS production and Ca2+ uptake were determined spectrofluorometrically. In cells exposed to oxidative stress, APC and DNP increased cell survival, delayed mPTP opening, and attenuated ROS production, which was reversed by mitochondrial repolarization with pyruvate. In isolated mitochondria, depolarization by APC and DNP attenuated ROS production, but not Ca2+ uptake. However, in stressed cardiomyocytes, a similar decrease in ΔΨm attenuated both cytosolic and mitochondrial Ca2+ accumulation. In conclusion, a partial decrease in ΔΨm underlies cardioprotective effects of APC by attenuating excess ROS production, resulting in a delay in mPTP opening and an increase in cell survival. Such decrease in ΔΨm primarily attenuates mitochondrial ROS production, with consequential decrease in mitochondrial Ca2+ uptake.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jinkun Xi ◽  
Huihua Wang ◽  
Guillaume Chanoit ◽  
Guang Cheng ◽  
Robert A Mueller ◽  
...  

Although resveratrol has been demonstrated to be cardioprotective, the detailed cellular and molecular mechanisms that mediate the protection remain elusive. We aimed to determine if resveratrol protects the heart at reperfusion by modulating the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3β (GSK-3β). Resveratrol (10μM) given at reperfusion reduced infarct size (12.2 ± 2.5 % of risk zone vs. 37.9 ± 3.1 % of risk zone in control, n = 6) in isolated rat hearts subjected to 30 min regional ischemia followed by 2 h of reperfusion, an effect that was abrogated by the mPTP opener atractyloside (30.9 ± 8.1 % of risk zone), implying that resveratrol may protect the heart at reperfusion by modulating the mPTP opening. To define the signaling mechanism underlying the action of resveratrol, we determined GSK-3β activity by measuring its phosphorylation at Ser 9 . Resveratrol significantly enhanced GSK-3β phosphorylation upon reperfusion (225.2 ± 30.0 % of control at 5 min of reperfusion). Further experiments showed that resveratrol induces translocation of GSK-3β to mitochondria and translocated GSK-3β interacts with the mPTP component cyclophilin D but not VDAC (the voltage-dependent anion channel) or ANT (the adenine nucleotide translocator) in cardiac mitochondria. Taken together, these data suggest that resveratrol prevents myocardial reperfusion injury by targeting the mPTP opening via GSK-3β. Translocation of GSK-3β to mitochondria and its interaction with the mPTP component cyclophilin D may serve as an essential mechanism that mediates the protective effect of resveratrol on reperfusion injury.


2021 ◽  
Author(s):  
Jinhai Zhai ◽  
Cuiping Yang ◽  
Tao Zhang ◽  
Dengyu Chen

Abstract BackgroundSalmonella typhimurium is a pathogenic gram-negative bacterium, which is found primarily in the intestinal lumen. It often causes diarrhea in infants and young children and leads to food poisoning, as well as septicemia and septic shock. In this study, we investigated the phenomenon and mechanism of vascular endothelial cells apoptosis induced by Salmonella typhimurium L forms, in order to recognize and control Salmonella typhimurium L-form infection.Methods The apoptosis of vascular endothelial cells at 8 hours after infection with Salmonella typhimurium L forms was determined by flow cytometric assay and fluoroscopy of Annexin V-FITC/PI staining. Caspase-9 was detected by spectrophotometer. Results Salmonella typhimurium L forms can induce apoptosis of vascular endothelial cells, with significant difference in the apoptosis rate compared with the control. Caspase-9 expression is higher than that of the control. Conclusion The ability to induce cell apoptosis of vascular endothelial cells by Salmonella typhimurium L forms may be related to mitochondria apoptosis pathway depending on Caspase-9.


2021 ◽  
Vol 21 ◽  
Author(s):  
Tatiana A. Fedotcheva ◽  
Nadezhda I. Fedotcheva

Aim: The study of action of iron, DOX, and their complex on the mitochondrial permeability transition pore (MPTP) opening and the detection of possible protectors of MPTP in the conditions close to mitochondria-dependent ferroptosis. Background: The toxicity of doxorubicin (DOX) is mainly associated with the free iron accumulation and mitochondrial dysfunction. DOX can provoke ferroptosis, iron-dependent cell death driven by the membrane damage. The mitochondrial permeability transition pore (MPTP) is considered as a common pathway leading to the development of apoptosis, necrosis, and, possibly, ferroptosis. The influence of DOX on the Ca2+ -induced opening of MPTP in the presence of iron has not yet been studied. Objective: The study was conducted on isolated liver and heart mitochondria. MPTP and succinate-ubiquinone oxidoreductase were studied as targets of DOX in mitochondria-dependent ferroptosis. Methods: The study was conducted on isolated mitochondria of the liver and heart. Changes of threshold calcium concentrations required for MPTP opening were measured by a Ca2+ selective electrode, mitochondrial membrane potential was registered by tetraphenylphosphonium (TPP+)-selective electrode, and mitochondrial swelling was recorded as a decrease in absorbance at 540 nm. The activity of succinate dehydrogenase (SDH) was determined by the reduction of the electron acceptor DCPIP. Conclusion: MPTP and the respiratory complex II are identified as the main targets of the iron-dependent action of DOX on the isolated mitochondria. All MPTP protectors tested abolished or weakened the effect of iron and a complex of iron with DOX on Ca2+ -induced MPTP opening, acting in different stages of MPTP activation. These data open new approaches to the modulation of the toxic influence of DOX on mitochondria with the aim to reduce their dysfunction


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Jasiel O Strubbe ◽  
Jason Schrad ◽  
James F Conway ◽  
Kristin N Parent ◽  
Jason N Bazil

Excessive Ca 2+ accumulation is the main source of cardiac tissue and cell death during myocardial ischemia-reperfusion injury (IR injury) and myocardial infarction. Calcium dysregulation and overload leads to mitochondrial dysfunction, excessive reactive oxygen species (ROS) production, catastrophic energy failure, and opening of the cyclosporine A-sensitive mitochondrial permeability transition pore (mPTP). Mitochondrial Ca 2+ accumulation also results in the formation of amorphous Ca 2+ -phosphate granules localized in the mitochondrial matrix. These amorphous electron-dense granules are main components of the mitochondrial Ca 2+ sequestration and buffering system by mechanisms not yet well understood. The two aims of the present study are to test the relationship of Ca 2+ -phosphate granule size and number in cardiac mitochondria 1) exposed to a bolus calcium sufficient to elicit permeabilization and 2) whether CsA-treated mitochondria alters granule formation and size. A time course series of CryoEM images was analyzed to follow the permeabilization process. CryoEM results showed that mitochondrial incubated for longer time-courses have increased number of small granules (40 - 110 nm), swelling, membrane rupture and induction of mPTP opening. Conversely, shorter incubation time resulted in less granules per mitochondrion yet of similar size (35 - 90 nm). CsA- treated mitochondria, on the other hand, showed bigger phosphate granules (120 - 160 nm), and both lower granules per mitochondria and mPTP opening susceptibility. These results suggest a novel mechanism for CsA in which Ca 2+ -phosphate granule sizes are enhanced while maintaining fewer per mitochondrion. This effect may explain why CsA-treated mitochondria have higher calcium tolerance, delayed Ca 2+ -dependent opening of the mPTP, and protects against reperfusion-induced myocardial necrosis.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Judith Bernal-Ramírez ◽  
Adriana Riojas-Hernández ◽  
Flor E Morales-Marroquín ◽  
Elvía M Domínguez-Barragán ◽  
David Rodríguez-Mier ◽  
...  

Several mechanisms have been implicated in heart failure (HF) development due to obesity, including altered Ca2+ homeostasis and mitochondrial increased reactive oxygen species (ROS). Besides their metabolic role, mitochondria are important cell death regulators, since their disruption induces apoptosis. The mitochondrial permeability transition pore (MPTP) formation is key in this process. Ca2+ and ROS are known inducers of MPTP, and mitochondria are the main ROS generators. However, it has not been demonstrated that MPTP formation is involved in cardiac cell death due to obesity. Therefore, the aim of this work was to determine whether Ca2+ alterations and/or MPTP opening underlie cardiac dysfunction. We used obese Zucker fa/fa rats (32 weeks old), displaying concentric hypertrophy and cardiac dysfunction. We measured: i) Systolic and diastolic Ca2+ signaling in isolated myocytes, in basal conditions and upon β-adrenergic stimulation (β-AS), and ii) in vitro mitochondrial function: respiration, ROS production and MPTP opening. We found that the main alteration in Ca2+ signaling in fa/fa myocytes was a decrease in SERCA Ca2+ removal capacity, since Ca2+ transient amplitude and spark frequency were unchanged. Furthermore, in fa/fa myocytes, β-AS response was preserved. On the other hand, fa/fa mitochondria respiration, in state 3 decreased, but was unchanged in state 4, when glutamate/malate were used as substrate, resulting in an small decrease in respiratory control. In addition, fa/fa mitochondria were more sensitive to MPTP opening, induced by Ca2+ and carboxyatractiloside (CAT). Moreover, fa/fa mitochondria showed increased H2O2 production, and in exposed thiol groups in the adenine nucleotide translocase, a regulatory MPTP component. Since Ca2+ signaling is relatively normal in fa/fa cells, it does not seem to be the main contributor to the cardiac contractile dysfunction. However, given that fa/fa mitochondria showed decrease respiratory performance, were more susceptible to MPTP opening, and showed enhanced H2O2 production. We conclude that fa/fa mitochondria were more vulnerable to enhanced oxidative stress, causing MPTP opening, which could be exacerbated by SERCA slower Ca2+ removal capacity, leading to myocyte apoptosis.


2011 ◽  
Vol 300 (4) ◽  
pp. H1237-H1251 ◽  
Author(s):  
María C. Villa-Abrille ◽  
Eugenio Cingolani ◽  
Horacio E. Cingolani ◽  
Bernardo V. Alvarez

Inhibition of Na+/H+ exchanger 1 (NHE1) reduces cardiac ischemia-reperfusion (I/R) injury and also cardiac hypertrophy and failure. Although the mechanisms underlying these NHE1-mediated effects suggest delay of mitochondrial permeability transition pore (MPTP) opening, and reduction of mitochondrial-derived superoxide production, the possibility of NHE1 blockade targeting mitochondria has been incompletely explored. A short-hairpin RNA sequence mediating specific knock down of NHE1 expression was incorporated into a lentiviral vector (shRNA-NHE1) and transduced in the rat myocardium. NHE1 expression of mitochondrial lysates revealed that shRNA-NHE1 transductions reduced mitochondrial NHE1 (mNHE1) by ∼60%, supporting the expression of NHE1 in mitochondria membranes. Electron microscopy studies corroborate the presence of NHE1 in heart mitochondria. Immunostaining of rat cardiomyocytes also suggests colocalization of NHE1 with the mitochondrial marker cytochrome c oxidase. To examine the functional role of mNHE1, mitochondrial suspensions were exposed to increasing concentrations of CaCl2 to induce MPTP opening and consequently mitochondrial swelling. shRNA-NHE1 transduction reduced CaCl2-induced mitochondrial swelling by 64 ± 4%. Whereas the NHE1 inhibitor HOE-642 (10 μM) decreased mitochondrial Ca2+-induced swelling in rats transduced with nonsilencing RNAi (37 ± 6%), no additional HOE-642 effects were detected in mitochondria from rats transduced with shRNA-NHE1. We have characterized the expression and function of NHE1 in rat heart mitochondria. Because mitochondria from rats injected with shRNA-NHE1 present a high threshold for MPTP formation, the beneficial effects of NHE1 inhibition in I/R resulting from mitochondrial targeting should be considered.


Sign in / Sign up

Export Citation Format

Share Document