scholarly journals Molecular and Clinical Insights into the Invasive Capacity of Glioblastoma Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Carlos Velásquez ◽  
Sheila Mansouri ◽  
Carla Mora ◽  
Farshad Nassiri ◽  
Suganth Suppiah ◽  
...  

The invasive capacity of GBM is one of the key tumoral features associated with treatment resistance, recurrence, and poor overall survival. The molecular machinery underlying GBM invasiveness comprises an intricate network of signaling pathways and interactions with the extracellular matrix and host cells. Among them, PI3k/Akt, Wnt, Hedgehog, and NFkB play a crucial role in the cellular processes related to invasion. A better understanding of these pathways could potentially help in developing new therapeutic approaches with better outcomes. Nevertheless, despite significant advances made over the last decade on these molecular and cellular mechanisms, they have not been translated into the clinical practice. Moreover, targeting the infiltrative tumor and its significance regarding outcome is still a major clinical challenge. For instance, the pre- and intraoperative methods used to identify the infiltrative tumor are limited when trying to accurately define the tumor boundaries and the burden of tumor cells in the infiltrated parenchyma. Besides, the impact of treating the infiltrative tumor remains unclear. Here we aim to highlight the molecular and clinical hallmarks of invasion in GBM.

2021 ◽  
Author(s):  
Viktor Nedzvetsky ◽  
◽  
Dmytro Masiuk ◽  
Viktor Gasso ◽  
Serhii Yermolenko ◽  
...  

The monograph is devoted to the study of the heavy metal influence on molecular and cellular processes in the animal organism. The state of the art of molecular pathway response to heavy metal toxicity is highlighted. Aspects of the impact of aluminium, cadmium, lead, mercury, and copper on biochemical features of cells are outlined. The relationship between the presence of heavy metal in an organism and disturbances in molecular and cellular progressions is revealed. The scientific monograph is proposed to ecotoxicologists, ecologists, experts interested in molecular biomarkers and bioindication. The book may be useful for students and researchers.


2005 ◽  
Vol 7 (13) ◽  
pp. 1-19 ◽  
Author(s):  
Richard C. Laughlin ◽  
Lesly A. Temesvari

The protozoan parasite Entamoeba histolytica is the causative agent of amoebic dysentery. It is prevalent in developing countries that cannot prevent its fecal–oral spread and ranks second in worldwide causes of morbidity by parasitic infection. Improvements in sanitation would help curb disease spread. However, a lack of significant progress in this area has resulted in the need for a better understanding of the molecular and cellular biology of pathogenesis in order to design novel methods of disease treatment and prevention. Recent insight into the cellular mechanisms regulating virulence of E. histolytica has indicated that processes such as endocytosis, secretion, host cell adhesion and encystation play major roles in the infectious process. This review focuses on components of the molecular machinery that govern these cellular processes and their role in virulence, and discusses how an understanding of this might reveal opportunities to interfere with E. histolytica infection.


Author(s):  
Ilma Robo

The treatment of periodontal diseases, mainly of their origin, with the most common clinical manifestation in form of gingival inflammation, is manifold and powerful, including: mechanical therapy, antibiotic, antiseptic and various approaches to treatment, which are recommended to be used within a short period of time. New therapeutic approaches have been proven as alternative treatment to conventional therapy, or in combination with conventional therapies, to reduce the number of periodontopathic pathogens in gingival sulcus. HBOT has a detrimental effect on periodontal microorganisms, as well as beneficial effects on the healing of periodontal tissue, increasing oxygen pressure in gingival pockets. Our study is aimed at reviewing the current published literature on hyperbaric oxygen therapy and focuses on role of HBOT as a therapeutic measure for the individual with periodontal disease in general and for the impact on the recovery of gingival inflammation. HBOT and periodontal treatment together, reduce up to 99% of the gram-negative anaerobic load of subgingival flora. HBOT, significantly reduces subgingival anaerobic flora. Clinical effects in 2-year follow-up of treated patients are sensitive. Reduction of gingival hemorrhage indexes, depth of peritoneum, plaque index, occurs in cases of combination of HBOT and detraction. Reduced load persists up to 2 months after therapy. The significant increase in connective tissue removal starts at the end of 2nd week, to achieve the maximum in week 3-6 of application. HBOT used for re-implantation, stimulates the healing of periodontal membrane, pulp, prevents root resorption, healing of periodontal lining tissues. HBOT, significantly reduces the hemorrhage index with 1.2 value difference, 0.7mm probe depth, reduces gingival fluid by 2. HGH exposure is increased by gingival blood flow, with a difference of 2 in measured value. The therapeutic effects of HBOT in the value of the evaluation index can be saved up to 1-year post treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreia I. Pimenta ◽  
Nuno Bernardes ◽  
Marta M. Alves ◽  
Dalila Mil-Homens ◽  
Arsenio M. Fialho

AbstractBurkholderia cenocepacia is known for its capacity of adherence and interaction with the host, causing severe opportunistic lung infections in cystic fibrosis patients. In this work we produced Giant Plasma Membrane Vesicles (GPMVs) from a bronchial epithelial cell line and validated their use as a cell-like alternative to investigate the steps involved in the adhesion process of B. cenocepacia. RNA-sequencing was performed and the analysis of the B. cenocepacia K56-2 transcriptome after the first contacts with the surface of host cells allowed the recognition of genes implicated in bacterial adaptation and virulence-associated functions. The sensing of host membranes led to a transcriptional shift that caused a cascade of metabolic and physiological adaptations to the host specific environment. Many of the differentially expressed genes encode proteins related with central metabolic pathways, transport systems, cellular processes, and virulence traits. The understanding of the changes in gene expression that occur in the early steps of infection can uncover new proteins implicated in B. cenocepacia-host cell adhesion, against which new blocking agents could be designed to control the progression of the infectious process.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Mary Frances Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Mirghani Mohamed ◽  
Edwin Swiatlo ◽  
...  

Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.


2021 ◽  
Vol 10 (6) ◽  
pp. 1239
Author(s):  
Alexandru Cojocaru ◽  
Emilia Burada ◽  
Adrian-Tudor Bălșeanu ◽  
Alexandru-Florian Deftu ◽  
Bogdan Cătălin ◽  
...  

As the average age and life expectancy increases, the incidence of both acute and chronic central nervous system (CNS) pathologies will increase. Understanding mechanisms underlying neuroinflammation as the common feature of any neurodegenerative pathology, we can exploit the pharmacology of cell specific ion channels to improve the outcome of many CNS diseases. As the main cellular player of neuroinflammation, microglia play a central role in this process. Although microglia are considered non-excitable cells, they express a variety of ion channels under both physiological and pathological conditions that seem to be involved in a plethora of cellular processes. Here, we discuss the impact of modulating microglia voltage-gated, potential transient receptor, chloride and proton channels on microglial proliferation, migration, and phagocytosis in neurodegenerative diseases.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraja Punde ◽  
Jennifer Kooken ◽  
Dagmar Leary ◽  
Patricia M. Legler ◽  
Evelina Angov

Abstract Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. “Codon harmonization” more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.


2021 ◽  
Author(s):  
Michelle van der Merwe ◽  
Gustav van Niekerk ◽  
Carla Fourie ◽  
Manisha du Plessis ◽  
Anna-Mart Engelbrecht

Author(s):  
Lorenzo Cangiano ◽  
Sabrina Asteriti

AbstractIn the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.


Sign in / Sign up

Export Citation Format

Share Document