scholarly journals Rapid Recognition of Geoherbalism and Authenticity of a Chinese Herb by Data Fusion of Near-Infrared Spectroscopy (NIR) and Mid-Infrared (MIR) Spectroscopy Combined with Chemometrics

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Haiyan Fu ◽  
Qiong Shi ◽  
Liuna Wei ◽  
Lu Xu ◽  
Xiaoming Guo ◽  
...  

Fourier transform near-infrared (NIR) spectroscopy and mid-infrared (MIR) spectroscopy play important roles in all fingerprint techniques because of their unique characteristics such as reliability, versatility, precision, and ease of measurement. In this paper, a supervised pattern recognition method based on the PLSDA algorithm by NIR and the NIR-MIR fusion spectra has been established to identify geoherbalism of Angelica dahurica from different regions and authenticity of Corydalis yanhusuo W. T. Wang. Comparing principle component analysis (PCA) cannot successfully identify geographical origins of Angelica dahurica. Linear discriminant analysis (LDA) also hardly distinguishes those origins. Furthermore, the PLSDA model based on the data fusion of NIR and IR was more accurate and efficient. But, the identification of authenticity of Corydalis yanhusuo W. T. Wang was still inaccurate in the PLSDA model. Consequently, data fusion of NIR-MIR original spectra combined with moving window partial least-squares discriminant analysis was firstly used and showed perfect properties on authenticity and adulteration discrimination of Corydalis yanhusuo W. T. Wang. It indicated that data fusion of NIR-MIR spectra combined with MWPLSDA could be considered as the promising tool for rapid discrimination of the geoherbalism and authenticity of more Chinese herbs in the future.

2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


2015 ◽  
Vol 39 (6) ◽  
pp. 2856-2865 ◽  
Author(s):  
Yara Gurgel Dall' Acqua ◽  
Luis Carlos Cunha Júnior ◽  
Viviani Nardini ◽  
Valquira Garcia Lopes ◽  
José Dalton da Cruz Pessoa ◽  
...  

2021 ◽  
pp. 096703352110495
Author(s):  
Cassius EO Coombs ◽  
Robert R Liddle ◽  
Luciano A González

The present study analysed the ability for portable near infrared reflectance (NIR) and Raman spectroscopy sensors to differentiate between grass-fed and grain-fed beef. Scans were made on lean and fat surfaces of 108 beef steak samples labelled as grass-fed ( n = 54) and grain-fed ( n = 54), with partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) used to develop discrimination models which were tested on independent datasets. Furthermore, PLS-DA was used to predict visual marbling score and days on feed (DOF). The NIR spectra accurately discriminated between grass- and grain-fed beef on both fat (91.7%, n = 92) and lean (88.5%, n = 96), as did Raman (fat 95.2%, n = 82; lean 69.6%, n = 68). Fat scanning using NIR spectroscopy moderately predicted DOF (r2val = 0.53), though Raman and NIR spectroscopy lean prediction models for DOF and marbling were less precise (r2val < 0.50). It can be concluded that portable NIR and Raman spectrometers can be used successfully to differentiate grass-fed from grain-fed beef and therefore aid retail and consumer confidence.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Elisabetta Stella ◽  
Roberto Moscetti ◽  
Letizia Carletti ◽  
Giuseppina Menghini ◽  
Francesco Fabrizi ◽  
...  

The study demonstrated the feasibility of the near infrared (NIR) spectroscopy use for hazelnut-cultivar sorting. Hazelnut spectra were acquired from 600 fruit for each cultivar sample, two diffuse reflectance spectra were acquired from opposite sides of the same hazelnut. Spectral data were transformed into absorbance before the computations. A different variety of spectral pretreatments were applied to extract characteristics for the classification. An iterative Linear Discriminant Analysis (LDA) algorithm was used to select a relatively small set of variables to correctly classify samples. The optimal group of features selected for each test was analyzed using Partial Least Squares Discriminant Analysis (PLS-DA). The spectral region most frequently chosen was the 1980-2060 nm range, which corresponds to best differentiation performance for a total minimum error rate lower than 1.00%. This wavelength range is generally associated with stretching and bending of the N-H functional group of amino acids and proteins. The feasibility of using NIR Spectroscopy to distinguish different hazelnut cultivars was demonstrated.


2005 ◽  
Vol 35 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Andrew D Richardson ◽  
James B Reeves III

Quantitative reflectance spectroscopy offers an alternative to traditional analytical methods for the determination of the chemical composition of a sample. The objective of this study was to develop a set of spectroscopic calibrations to determine the chemical composition (nutrients, carbon, and fiber constituents, determined using standard wet lab methods) of dried conifer foliage samples (N = 72), and to compare the predictive ability of calibrations based on three different spectral regions: visible and shortwave near infrared (VIS–sNIR, 400- to 1100-nm wavelengths), near infrared (NIR, 1100- to 2500-nm wavelengths), and mid infrared (MIR, 2500- to 25 000-nm wavelengths). To date, most quantitative reflectance spectroscopy has been based on the VIS–sNIR–NIR, and the ability of MIR calibrations to predict the composition of tree foliage has not been tested. VIS–sNIR calibrations were clearly inferior to those based on longer wavelengths. For 8 of 11 analytes, the MIR calibrations had the lowest standard error of cross-validation, but in most cases the difference in accuracy between NIR and MIR calibrations was small, and against an independent validation set, there was no clear evidence that either spectral region was superior. Although quantitative MIR spectroscopy is at a more primitive state of development than NIR spectroscopy, these results demonstrate that the mid infrared has considerable promise for quantitative analytical work.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Elisabetta Stella ◽  
Roberto Moscetti ◽  
Letizia Carletti ◽  
Giuseppina Menghini ◽  
Francesco Fabrizi ◽  
...  

The study demonstrated the feasibility of the near infrared (NIR) spectroscopy use for hazelnut-cultivar sorting. Hazelnut spectra were acquired from 600 fruit for each cultivar sample, two diffuse reflectance spectra were acquired from opposite sides of the same hazelnut. Spectral data were transformed into absorbance before the computations. A different variety of spectral pretreatments were applied to extract characteristics for the classification. An iterative Linear Discriminant Analysis (LDA) algorithm was used to select a relatively small set of variables to correctly classify samples. The optimal group of features selected for each test was analyzed using Partial Least Squares Discriminant Analysis (PLS-DA). The spectral region most frequently chosen was the 1980-2060 nm range, which corresponds to best differentiation performance for a total minimum error rate lower than 1.00%. This wavelength range is generally associated with stretching and bending of the N-H functional group of amino acids and proteins. The feasibility of using NIR Spectroscopy to distinguish different hazelnut cultivars was demonstrated.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Lin Mo ◽  
Tong Wu ◽  
Chao Tan

Cancer diagnosis is one of the most important tasks of biomedical research and has become the main objective of medical investigations. The present paper proposed an analytical strategy for distinguishing between normal and malignant colorectal tissues by combining the use of near-infrared (NIR) spectroscopy with chemometrics. The successive projection algorithm-linear discriminant analysis (SPA-LDA) was used to seek a reduced subset of variables/wavenumbers and build a diagnostic model of LDA. For comparison, the partial least squares-discriminant analysis (PLS-DA) based on full-spectrum classification was also used as the reference. Principal component analysis (PCA) was used for a preliminary analysis. A total of 186 spectra from 20 patients with partial colorectal resection were collected and divided into three subsets for training, optimizing, and testing the model. The results showed that, compared to PLS-DA, SPA-LDA provided more parsimonious model using only three wavenumbers/variables (4065, 4173, and 5758 cm−1) to achieve the sensitivity of 84.6%, 92.3%, and 92.3% for the training, validation, and test sets, respectively, and the specificity of 100% for each subset. It indicated that the combination of NIR spectroscopy and SPA-LDA algorithm can serve as a potential tool for distinguishing between normal and malignant colorectal tissues.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Lijun Yao ◽  
Weiqun Xu ◽  
Tao Pan ◽  
Jiemei Chen

The moving-window bis-correlation coefficients (MW-BiCC) was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and [Formula: see text]-thalassemia with visible and near-infrared (Vis–NIR) spectroscopy. The well-performed moving-window principal component analysis linear discriminant analysis (MW-PCA–LDA) was also conducted for comparison. A total of 306 transgenic (positive) and 150 nontransgenic (negative) leave samples of sugarcane were collected and divided to calibration, prediction, and validation. The diffuse reflection spectra were corrected using Savitzky–Golay (SG) smoothing with first-order derivative ([Formula: see text]), third-degree polynomial ([Formula: see text]) and 25 smoothing points ([Formula: see text]). The selected waveband was 736–1054[Formula: see text]nm with MW-BiCC, and the positive and negative validation recognition rates ([Formula: see text]_REC[Formula: see text], [Formula: see text]_REC[Formula: see text] were 100%, 98.0%, which achieved the same effect as MW-PCA–LDA. Another example, the 93 [Formula: see text]-thalassemia (positive) and 148 nonthalassemia (negative) of human hemolytic samples were collected. The transmission spectra were corrected using SG smoothing with [Formula: see text], [Formula: see text] and [Formula: see text]. Using MW-BiCC, many best wavebands were selected (e.g., 1116–1146, 1794–1848 and 2284–2342[Formula: see text]nm). The [Formula: see text]_REC[Formula: see text] and [Formula: see text]_REC[Formula: see text] were both 100%, which achieved the same effect as MW-PCA–LDA. Importantly, the BiCC only required calculating correlation coefficients between the spectrum of prediction sample and the average spectra of two types of calibration samples. Thus, BiCC was very simple in algorithm, and expected to obtain more applications. The results first confirmed the feasibility of distinguishing [Formula: see text]-thalassemia and normal control samples by NIR spectroscopy, and provided a promising simple tool for large population thalassemia screening.


2005 ◽  
Vol 13 (2) ◽  
pp. 63-68 ◽  
Author(s):  
E. Corbella ◽  
D. Cozzolino

This study reports the use of visible (vis) and near infrared (NIR) spectroscopy as a tool to classify honey samples from Uruguay, according to their floral origin. Classification models were developed using principal component analysis, discriminant partial least squares (DPLS) regression and linear discriminant analysis (LDA). Honey samples ( n = 50) from two floral origins, namely Eucalyptus spp. and pasture, were split randomly into even calibration ( n = 25) and validation sets ( n = 25). Both LDA and DPLS models correctly classified, on average, more than 75% of the honey samples belonging to pasture and more than 85% of the honey samples belonging to Eucalyptus spp. These results showed that vis-NIR might be a suitable and alternative method that can easily be implemented by both the industry and retailers to classify samples according their floral origin. Vis-NIR analysis requires little sample preparation and is rapid. However, the relatively limited number of samples involved in the present work led us to be cautious in terms of extrapolating the results of this work to other floral types.


Sign in / Sign up

Export Citation Format

Share Document