scholarly journals Gaussian Quantum Bat Algorithm with Direction of Mean Best Position for Numerical Function Optimization

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Xingwang Huang ◽  
Chaopeng Li ◽  
Yunming Pu ◽  
Bingyan He

Quantum-behaved bat algorithm with mean best position directed (QMBA) is a novel variant of bat algorithm (BA) with good performance. However, the QMBA algorithm generates all stochastic coefficients with uniform probability distribution, which can only provide a relatively small search range, so it still faces a certain degree of premature convergence. In order to help bats escape from the local optimum, this article proposes a novel Gaussian quantum bat algorithm with mean best position directed (GQMBA), which applies Gaussian probability distribution to generate random number sequences. Applying Gaussian distribution instead of uniform distribution to generate random coefficients in GQMBA is an effective technique to promote the performance in avoiding premature convergence. In this article, the combination of QMBA and Gaussian probability distribution is applied to solve the numerical function optimization problem. Nineteen benchmark functions are employed and compared with other algorithms to evaluate the accuracy and performance of GQMBA. The experimental results show that, in most cases, the proposed GQMBA algorithm can provide better search performance.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Li Mao ◽  
Yu Mao ◽  
Changxi Zhou ◽  
Chaofeng Li ◽  
Xiao Wei ◽  
...  

Artificial bee colony (ABC) algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC) algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Guoming Du ◽  
Yangbo Chen ◽  
Wei Sun

Complex nonlinear optimization problems are involved in optimal spatial search, such as location allocation problems that occur in multidimensional geographic space. Such search problems are generally difficult to solve by using traditional methods. The bat algorithm (BA) is an effective method for solving optimization problems. However, the solution of the standard BA is easily trapped at one of its local optimum values. The main cause of premature convergence is the loss of diversity in the population. The niche technique is an effective method to maintain the population diversity, to enhance the exploration of the new search domains, and to avoid premature convergence. In this paper, a geographic information system- (GIS-) based niche hybrid bat algorithm (NHBA) is proposed for solving the optimal spatial search. The NHBA is able to avoid the premature convergence and obtain the global optimal values. The GIS technique provides robust support for processing a substantial amount of geographical data. A case in Fangcun District, Guangzhou City, China, is used to test the NHBA. The comparative experiments illustrate that the BA, GA, FA, PSO, and NHBA algorithms outperform the brute-force algorithm in terms of computational efficiency, and the optimal solutions are more easily obtained with NHBA than with BA, GA, FA, and PSO. Moreover, the precision of NHBA is higher and the convergence of NHBA is faster than those of the other algorithms under the same conditions.


2019 ◽  
Vol 37 (2) ◽  
pp. 2367-2384 ◽  
Author(s):  
Jianzhong Xu ◽  
Fu Yan ◽  
Oluwafolakemi Grace Ala ◽  
Lifei Su ◽  
Fengshu Li

Sign in / Sign up

Export Citation Format

Share Document