scholarly journals Assessment of Performance of Posidona oceanica (L.) as Biosorbent for Crude Oil-Spill Cleanup in Seawater

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Senda Ben Jmaa ◽  
Amjad Kallel

The marine environment is constantly at risk of pollution by hydrocarbon spills that requires its cleanup to protect the environment and human health. Posidonia oceanica (L.) (PO) beach balls, which are characteristic of the Mediterranean Sea and abundant on the beaches, are used as biosorbent to remove hydrocarbons from the sea. The impact of several factors such as oil concentration, time sorption, and weight sorbent was investigated to determine the oil and water sorption capacity for raw and milled P. oceanica fibers. The study of kinetic models for initial crude oil concentration of 2.5, 5, 8.8, 10, 15, 20, 30, and 40 g/L revealed that crude uptake followed the pseudo-first-order model while, for isotherm models, the crude uptake onto the P. oceanica tended to fit the Langmuir model. Experiments were performed according to two systems: a pure oil and pure water system and a mixed oil/water system. For the dry system (pure oil and pure water), the maximum oil and water sorption capacity of raw and milled fibers was found to be 5.5 g/g and 14 g/g for oil and 14.95 g/g and 15.84 g/g for water, respectively, whereas, in the mixed oil/water system, the maximum oil and water sorption capacity was estimated as 4.74 g/g, 12.80 g/g and 7.41 g/g, 8.31 g/g, respectively. The results showed that, in spite of their absorbency of a lot of water, the milled fibers with grain size ranging between 0.5 mm and 1 mm might be the relevant sorbent for the elimination of crude oil from seawater thanks to its efficient sorption capacity and low cost.

2016 ◽  
Vol 8 (4) ◽  
pp. 397-402
Author(s):  
Eglė Budriūtė ◽  
Vaidotas Vaišis ◽  
Donatas Mikulskis

Effective clean-up of oil spills due to their negative environmental and economic impact is of capital importance. Clean-up of oil by sorption is considered one of the most desirable choices, because oil can be completely removed without causing any secondary pollution. Natural organic sorbents had been investigated and developed to control oil products‘ spills. Plant biomass is a renewable resource which can be converted into various materials and energy. Hemp (USO-31), as a textile industry waste, was used as an oil product sorbent material. The present study examines hemp sorption capacity of water using different fractions of hemp raw material to be used in oil/water mixtures. The experimental research revealed that water sorption capacity depends on fraction size and sorption time. The results of water sorption capacity of 2.5 and 5.0 mm after 1440 min were 4.74 and 4.67 g water/g dry sorbent, respectively. Labai svarbu efektyviai likviduoti išsiliejusius naftos produktus dėl jų neigiamo poveikio aplinkai ir ekonomikai. Naftos produktų valymo metodas pasitelkiant sorbentus yra laikomas vienu iš geriau­sių pasirinkimų, nes produktai yra absorbuojami sorbentų, nesukeliant jokios antrinės taršos. Natūralūs organiniai sorbentai buvo tiriami ir tobulinami, siekiant kontroliuoti naftos produktų išsiliejimus. Augalų biomasė yra atsinaujinantis išteklis, kuris gali būti naudojamas įvairioms medžiagoms ir energijai išgauti. Kanapių spaliai (USO-31), tekstilės pramonės atlieka, buvo tiriami kaip naftos produktų sorbentas. Buvo išnagrinėta kanapių vandens sorbcija naudojant įvairias šios medžiagos frakcijas. Eksperimentinis tyrimas parodė, kad vandens sorbcija priklauso nuo frakcijos dydžio ir sorbcijos laiko. Tyrimų metu buvo nustatyta vandens sorbcijos geba – 4,74 ir 4,67 g vandens/g sauso sorbento 2,5 ir 5,0 mm pavyzdžiams po 1440 min atitinkamai.


2011 ◽  
Vol 239-242 ◽  
pp. 2650-2654
Author(s):  
Fu Chen ◽  
Jie He ◽  
Ping Guo ◽  
Yuan Xu ◽  
Cheng Zhong

According to the mechanisms of carbon dioxide miscible flooding and previous researchers’ work on synthesis of CO2-soluble surfactant, Citric acid isoamyl ester was synthesized, and it’s oil solubility and the rate of viscosity reduction both in oil-water system and oil were evaluated. And then we found that this compound can solve in oil effectively; the optimum mass of Citric acid isoamyl ester introduced in oil-water system is 0.12g when the mass ratio of oil and water is 7:3 (crude oil 23.4g, formation water 10g) and the experimental temperature is 50°C , the rate of viscosity reduction is 47.2%; during the evaluation of the ability of Citric acid isoamyl ester to decrease oil viscosity, we found that the optimum dosage of this compound in 20g crude oil is 0.2g when the temperature is 40°C, and the rate of viscosity reduction is 7.37% at this point.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 327
Author(s):  
Karol Sztekler ◽  
Wojciech Kalawa ◽  
Agata Mlonka-Medrala ◽  
Wojciech Nowak ◽  
Łukasz Mika ◽  
...  

Adsorption chillers are characterized by low electricity consumption, lack of moving parts, and high reliability. The disadvantage of these chillers is their large weight due to low adsorbent sorption capacity. Therefore, the attention is turned to finding a sorbent with a high water sorption capacity and enhanced thermal conductivity to increase chiller efficiency. The article discusses the impact of selected adhesives used for the production of an adsorption bed in order to improve heat exchange on its surface. Experiments with silica gel with three commercial types of glue on metal plates representing heat exchanger were performed. The structure of samples was observed under a microscope to determine the coverage of adsorbent by glue. To determine the kinetics of the free adsorption, the amounts of moisture adsorbed and the desorption dynamics the prepared samples of coated bed on metal plates were moisturized and dried in a moisture analyzer. Samples made of silica gel mixed with the adhesive 2-hydroxyethyl cellulose, show high adsorption capacity, low dynamic adsorption, and medium dynamic desorption. Samples containing adhesive poly(vinyl alcohol) adsorb less moisture, but free adsorption and desorption were more dynamic. Samples containing the adhesive hydroxyethyl cellulose show lower moisture capacity, relatively dynamic adsorption, and lower dynamic desorption.


2014 ◽  
Vol 1020 ◽  
pp. 823-826
Author(s):  
G.Sh. Hovsepyan ◽  
M.A. Kalantaryan ◽  
T.V. Yedoyan

The aim of this paper is to study the possibility of expanded obsidian and its modified product use for oil sorption, in that tetraethoxisilane (TEOS) has been used as a modifier. The optimal concentration of the modifier was determined by 50 per cent weight of expanded obsidian. The expanded obsidian was previously activated with 0,1 M solution of hydrochloric acid. IR spectrometry was used to characterise structural changes in the modified expanded obsidian samples. To determine water sorption capacity a series of experiments has been carried out. The analysis of obtained experimental data showed that after surface modification of expanded obsidian water capacity is reduced 3 times after the surface modification of EO.


1994 ◽  
Vol 39 (3) ◽  
pp. 513-516 ◽  
Author(s):  
Mark A. Reinsel ◽  
John J. Borkowski ◽  
John T. Sears

2015 ◽  
Vol 29 (6) ◽  
pp. 3616-3625 ◽  
Author(s):  
Daniel P. Cherney ◽  
Chunping Wu ◽  
Rachel M. Thorman ◽  
Jessica L. Hegner ◽  
Mohsen S. Yeganeh ◽  
...  

Author(s):  
Joseph Katz ◽  
CJ Beegle-Krause ◽  
Michel Boufadel ◽  
Marcelo Chamecki ◽  
Vijay John ◽  
...  

Abstract A series of GOMRI-sponsored experimental and computational studies have discovered, elucidated and quantified the impact of small-scale processes on the dispersion, transport and weathering of crude oil slicks and subsurface plumes. Physical interfacial phenomena occurring at micron-scales include the formation of particle-stabilized emulsions, penetration of particles into oil droplets, formation of compound water-containing oil droplets during plume breakup, and the mechanisms affecting the breakup of oil into micro-droplet by tip streaming resulting from the drastic reduction in interfacial tension upon introduction of dispersant. Efforts aimed at development targeted delivery of surfactants have introduced solvent-free halloysite nanotubes that can be filled with surfactants, and preferentially released at oil-water interface. Buoyant surfactant-based gels, which enhance their encounter rates with oil slicks and adhere to weathered oil have also been developed. Studies of oil-bacteria interactions during early phases of biodegradation and shown how the bacteria, some highly active, attach to the oil-water interfaces and form complex films. Clay-decorated droplets sequester these bacteria and promote the propagation of these biofilm. Long extracellular polymeric substance (EPS) streamers generated by these biofilms form connected networks involving multiple droplets and debris, as well as increase the drag on the oil droplets. At 0.01–10 m scales, the generation of subsurface and airborne crude oil droplets by breaking waves, subsurface plumes and raindrop impact have been quantified. For waves, premixing the oil with dispersant reduces the droplets sizes to micron- and submicron-scales, and changes the slope of their size distribution. Without dispersant, the droplet diameters can be predicted based on the turbulence scales. With dispersant, the droplets are much smaller than the turbulence scales owing to the abovementioned tip-streaming. Aerosolization of oil is caused both by the initial splash and by subsequent bubble bursting, as entrained bubbles rise to the surface. Introduction of dispersant increases the airborne nano-droplet concentration by orders of magnitude, raising health questions. Dispersant injection also reduces the size of droplets in subsurface plumes, affecting the subsequent dispersion of these plume by currents and turbulence. Advancements have also been made in modeling of dissolution of oil in plumes, as well as in applications of Large Eddy Simulations (LES) to model plumes containing oil droplets and gas bubbles. The new multiscale framework, which accounts for the droplet size distribution and mass diffusion, can simulate the near- and far-fields of plumes, and predict the effect of vertical mixing promoted by turbulence on the transport of dispersed oil.


Author(s):  
S. A. Osemeahon ◽  
B. J. Dimas

This study will present a novel method for crude oil remediation in water. The research was carried out to explore the possible application of Sterculia setigera as a potential biodegradable sorbent for oil cleanup from water. The crude Sterculia setigera (CSS), retted Sterculia setigera (RSS) and bleached Sterculia setigera (PFSS) were subjected to sorption studies to optimize their sorption capacity. The results revealed that the efficiency of sorbent to remove crude oil from water is related to the sorbent weight, contact time, initial oil concentration and temperature of sorption. It was found that increase in sorbent weight led to increase in sorption capacity from 3.75 -5.12 g/g, 4.72- 6.41 g/g, and 4.61-6.18 g/g in CSS, RSS and PFSS respectively. Oil sorption capacity increases by 21-27% when oil concentration was varied from 5-20 g. Contact time played a role only at the beginning of oil sorption study and became less important near equilibrium. Sorption time was varied from 10-70 min and the highest sorption capacity was recorded at 30 min. then it gradually reduced and became steady. The effect of temperature was investigated from 30-60°C. A decreased of 34-37% in oil sorption capacity was observed with increased in temperature.  RSS exhibit lower water sorption when compared to the other sorbents. The sorbents showed good reusability after 8 cycles, with less than 50% reduction in sorption capacity and good reusability. Sterculia setigera demonstrated good potentials for utilization as natural sorbent for oil cleanup.


Sign in / Sign up

Export Citation Format

Share Document