scholarly journals On the Multidomain Bivariate Spectral Local Linearisation Method for Solving Systems of Nonsimilar Boundary Layer Partial Differential Equations

Author(s):  
Vusi Mpendulo Magagula

In this work, a novel approach for solving systems of nonsimilar boundary layer equations over a large time domain is presented. The method is a multidomain bivariate spectral local linearisation method (MD-BSLLM), Legendre-Gauss-Lobatto grid points, a local linearisation technique, and the spectral collocation method to approximate functions defined as bivariate Lagrange interpolation. The method is developed for a general system of n nonlinear partial differential equations. The use of the MD-BSLLM is demonstrated by solving a system of nonlinear partial differential equations that describe a class of nonsimilar boundary layer equations. Numerical experiments are conducted to show applicability and accuracy of the method. Grid independence tests establish the accuracy, convergence, and validity of the method. The solution for the limiting case is used to validate the accuracy of the MD-BSLLM. The proposed numerical method performs better than some existing numerical methods for solving a class of nonsimilar boundary layer equations over large time domains since it converges faster and uses few grid points to achieve accurate results. The proposed method uses minimal computation time and its accuracy does not deteriorate with an increase in time.

Author(s):  
RATIKANTA BEHERA ◽  
MANI MEHRA

In this paper, we apply wavelet optimized finite difference method to solve modified Camassa–Holm and modified Degasperis–Procesi equations. The method is based on Daubechies wavelet with finite difference method on an arbitrary grid. The wavelet is used at regular intervals to adaptively select the grid points according to the local behaviour of the solution. The purpose of wavelet-based numerical methods for solving linear or nonlinear partial differential equations is to develop adaptive schemes, in order to achieve accuracy and computational efficiency. Since most of physical and scientific phenomena are modeled by nonlinear partial differential equations, but it is difficult to handle nonlinear partial differential equations analytically. So we need approximate solution to solve these type of partial differential equation. Numerical results are presented for approximating modified Camassa–Holm and modified Degasperis–Procesi equations, which demonstrate the advantages of this method.


1982 ◽  
Vol 123 ◽  
pp. 219-236 ◽  
Author(s):  
S. C. R. Dennis ◽  
D. B. Ingham

The problem of determining both the steady and unsteady axially symmetrical motion of a viscous incompressible fluid outside a fixed sphere when the fluid at large distances rotates as a solid body is considered. It is assumed that the Reynolds number for the motion is so large that the boundary-layer equations may be assumed to hold. The steady-state boundary-layer equations are solved using backward- forward differencing and the terminal solutions at the equator and the pole of the sphere are generatedas part ofthe numerical procedure. To check that this steady-state solution can be approached from an unsteady situation, the case of a sphere that is initially rotating with the same constant angular velocity as the fluid and is then impulsively brought to rest is investigated. I n this case the motion is governed by a coupled set of three nonlinear time-dependent partial differential equations, which are solved by employing the semi-analytical method of series truncation to reduce the number of independent variables by one and then solving by numerical methods a finite set of partial differential equations in one space variable and time. The physical properties of the flow are calculated as functions of the time and compared with the known solution at small times and the steady-state solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 545-554
Author(s):  
Asghar Ali ◽  
Aly R. Seadawy ◽  
Dumitru Baleanu

AbstractThis article scrutinizes the efficacy of analytical mathematical schemes, improved simple equation and exp(-\text{Ψ}(\xi ))-expansion techniques for solving the well-known nonlinear partial differential equations. A longitudinal wave model is used for the description of the dispersion in the circular rod grounded via transverse Poisson’s effect; similarly, the Boussinesq equation is used for extensive wave propagation on the surface of water. Many other such types of equations are also solved with these techniques. Hence, our methods appear easier and faster via symbolic computation.


Sign in / Sign up

Export Citation Format

Share Document