scholarly journals The Stability of Gob-Side Entry Retaining in a High-Gas-Risk Mine

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junwen Zhang ◽  
Yulin Li

There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.

2021 ◽  
Author(s):  
Jindong Cao ◽  
Xiaojie Yang ◽  
Ruifeng Huang ◽  
Qiang Fu ◽  
Yubing Gao

Abstract The high stress of the surrounding rock of Hexi Coal Mine easily leads to severe deformation of the retracement channel and the appearance of the mine pressure during the retreat severely affects the stability of the roadway. In order to solve the above problems, a roadway surrounding rock control technology is proposed and tested. The bidirectional energy-concentrated tensile blasting technology is used to perform directional cutting to cut off the stress propagation path. Firstly, the deformation mechanism of the roof is analyzed by establishing the deformation mechanical model of the roof of the retracement channel. Then, according to the geological conditions of working face 3314 and theoretical calculation, the key parameters of roof cutting and pressure releasing of retracement channel are determined, and through the numerical analysis of its cutting effect, the length of cutting seam is 11.5m, and the cutting angle is 10°. Finally, a field test is carried out on the retracement channel of 3314 working face to verify the effect of roof cutting. The results show that the deformation of the retracement channel and the main roadway is very small. In the process of connecting the working face and the retracement channel, the maximum roof to floor convergence is 141mm, and the two sides convergence is 79mm. After the hydraulic support was retracted, the maximum roof to floor convergence of the surrounding rock is 37 mm, and the two sides convergence is 33mm. The roof cutting and pressure releasing of the retracement channel ensures the safe evacuation of the equipment and the stability of the main roadway. The cutting effect is obvious for the release of pressure, which is of great significance to engineering practice.


2019 ◽  
Vol 11 (22) ◽  
pp. 6398
Author(s):  
Houqiang Yang ◽  
Changliang Han ◽  
Nong Zhang ◽  
Changlun Sun ◽  
Dongjiang Pan ◽  
...  

Goaf-side roadway driving could not only notably reduce the loss of coal resources and improve the coal recovery rates, but also greatly mitigate the imbalance between excavation speed and production needs, which are able to prolong the service life of the mine and are pivotal to sustainable and efficient development of underground coal mines. However, it is difficult to control the stability of the goaf-side roadway, especially under mining disturbance of another adjacent coal working face. In order to control the stability of the goaf-side roadway, Haulageway 1513 in the Xinyi Coal Mine of China, under mining disturbance, theoretical analysis, numerical simulation, and engineering practice were carried out to reveal the mechanism of overburden key strata fracture, stress distribution, and deformation characteristics of the surrounding rock of the goaf-side roadway due to mining disturbance. Results showed that some key strata above Goaf 1512 did not fracture due to the influence of the strata caving angles. However, these key strata would fracture and break into rock blocks when suffering from mining disturbance of the adjacent coal working face, which changed the stress distribution and increased the deformations of the surrounding rock of the goaf-side roadway. The combined techniques of pressure relief and bolt support were proposed and carried out to control the stability of the goaf-side roadway. Engineering practice indicated that the maximum deformations of the roof and sidewall-to-sidewall were 220 mm and 470 mm, respectively. The deformations of the goaf-side roadway under mining disturbance were efficiently controlled.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Biao Zhang ◽  
Huaqiang Zhou ◽  
Qingliang Chang ◽  
Xu Zhao ◽  
Yuantian Sun

Based on geological conditions of 3318 working face haulage roadway in Xuchang Coal Mine, as well as the space-time relationship with surrounding gob, theoretical analysis and numerical simulation were used to study the influence of fault structure on the original rock stress of 3318 working face transport roadway. Considering the composite action of the leading supporting pressure of 3318 working face and the structure and the lateral supporting pressure of gob, the stress distribution and deformation law of roadway under the complex and high-stress condition are studied. The results show that, under the superposition of lateral abutment pressure of goaf and abutment pressure of adjacent working face and fault structure, the peak stress of roadway roof and floor moves to the surface of roadway surrounding rock, and its distribution law changes from obvious symmetry to asymmetry; surrounding rock on both sides of roadway forms asymmetric circular concentrated stress area; roof and floor and two sides of roadway show asymmetric characteristics. This reveals the stability characteristics of roadway surrounding rock under the action of multiple perturbation stresses.


2021 ◽  
Author(s):  
Yongliang LI ◽  
Renshu Yang ◽  
Shizheng Fang ◽  
Hai Lin ◽  
Shaojie Lu ◽  
...  

Abstract There is great variation in the lithology and lamination thickness of composite roof in coal-measure strata; thus, the roof is prone to delamination and falling, and it is difficult to control the surrounding rock when developing roadway in such rock strata. In deep mining, the stress environment of surrounding rock is complex, and the mechanical response of the rock mass is different from that of the shallow rock mass. For composite-roof roadway excavated in deep rock mass, the key to safe and efficient production of the mine is ensuring the stability of the roadway. The present paper obtains typical failure characteristics and deformation and failure mechanisms of composite-roof roadway with a buried depth of 650 m at Zhaozhuang Coal Mine (Shanxi Province, China). On the basis of determining a reasonable cross-section shape of the roadway and according to the failure characteristics of the composite roof in different regions, the roof is divided into an unstable layer, metastable layer, and stable layer. The controlled unstable layer and metastable layer are regarded as a small structure while the stable layer is regarded as a large structure. A superimposed coupling support technology of large and small structures with a multi-level prestressed bearing arch formed by strong rock bolts and highly prestressed cable bolts is put forward. The support technology provides good application results in the field. The study thus provides theoretical support and technical guidance for ground control under similar geological conditions.


Author(s):  
Xingkai Wang ◽  
Wenbing Xie ◽  
Shengguo Jing ◽  
Jianbiao Bai ◽  
Zhili Su

Serious damage caused by floor heave in the coal given chamber of a vertical coal bunker is one of the challenges faced in underground coal mines. Engineering practice shows that it is more difficult to maintain the coal given chamber (CGC) than a roadway. More importantly, repairing the CGC during mining practice will pose major safety risks and reduce production. Based on the case of the serious collapse that occurred in the bearing structure of the CGC at the lower part of the 214# coal bunker in Xiashijie mine, China, this work analysed (i) the main factors influencing floor heave and (ii) the failure mechanism of the load-bearing structure in the CGC using FLAC2D numerical models and expansion experiment. The analysis results indicate that: the floor heave, caused mainly by mine water, is the basic reason leading to the instability and repeated failure of the CGC in the 214# coal bunker. Then a new coal bunker, without building the CGC, is proposed and put into practice to replace the 214# coal bunker. The FLAC3D software program is adopted to establish the numerical model of the wall-mounted coal bunker (WMCB), and the stability of the rock surrounding the WMCB is simulated and analysed. The results show that: (1) the rock surrounding the sandstone segment is basically stable. (2) The surrounding rock in the coal seam segment, which moves into the inside of the bunker, is the main zone of deformation for the entire rock mass surrounding the bunker. Then the surrounding rock is controlled effectively by means of high-strength bolt–cable combined supporting technology. According to the geological conditions of the WMCB, the self-bearing system, which includes (i) H-steel beams, (ii) H-steel brackets, and (iii) self-locking anchor cables, is established and serves as a substitute for the CGC to transfer the whole weight of the bunker to stable surrounding rock. The stability of the new coal bunker has been verified by field testing, and the coal mine has gained economic benefit to a value of 158.026174 million RMB over three years. The new WMCB thus made production more effective and can provide helpful references for construction of vertical bunkers under similar geological conditions.


2020 ◽  
Vol 12 (3) ◽  
pp. 1197 ◽  
Author(s):  
Zhijun Tian ◽  
Zizheng Zhang ◽  
Min Deng ◽  
Shuai Yan ◽  
Jianbiao Bai

Gob-side entry retained technology is of great significance to develop coal mining industry sustainably, which can improve the coal recovery rate by mining without the coal pillar. However, scholars and researchers pay little attention to the gob-side entry retained with soft roof, floor, and seam in thin coal seams. In this study, the difficulties and key points of surrounding rock control for gob-side entry retained with soft roof, floor, and seam in thin coal seams were firstly proposed. Secondly, the mechanical model of the interaction between the roadside backfill body and the roof for gob-side entry retained with soft roof, floor, and seam in thin coal seams was established, and the relevant parameters were designed. Finally, the above results were verified by the engineering practice of gob-side entry retained technology and the monitoring of mine pressure on the 1103 working face of the Heilong Coal Mine. Moreover, the effect factors of surrounding rock stability for gob-side entry retained with soft roof, floor, and seam in thin coal seams were discussed using the discrete element method. The results could provide guidance for gob-side entry retained with soft roof, floor, and seam in thin coal seams under similar geological conditions.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5344
Author(s):  
Feng Cui ◽  
Shuai Dong ◽  
Xingping Lai ◽  
Jianqiang Chen ◽  
Chong Jia ◽  
...  

In the inclination direction, the fracture law of a longwall face roof is very important for roadway control. Based on the W1123 working face mining of Kuangou coal mine, the roof structure, stress and energy characteristics of W1123 were studied by using mechanical analysis, model testing and engineering practice. The results show that when the width of W1123 is less than 162 m, the roof forms a rock beam structure in the inclined direction, the floor pressure is lower, the energy and frequency of microseismic (MS) events are at a low level, and the stability of the section coal pillar is better. When the width of W1123 increases to 172 m, the roof breaks along the inclined direction, forming a double-hinged structure, the floor pressure is increased, and the frequency and energy of MS events also increases. The roof gathers elastic energy release, and combined with the MS energy release speed it can be considered that the stability of the section coal pillar is better. As the width of W1123 increases to 184 m, the roof in the inclined direction breaks again, forming a multi-hinged stress arch structure, and the floor pressure increases again. MS high-energy events occur frequently, and are not conducive to the stability of the section coal pillar. Finally, through engineering practice we verified the stability of the section coal pillar when the width of W1123 was 172 m, which provides a basis for determining the width of the working face and section coal pillar under similar conditions.


Sign in / Sign up

Export Citation Format

Share Document