scholarly journals Nonlinear Dynamic Characteristics of Marine Rotor-Bearing System under Heaving Motion

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yongchao Han ◽  
Ming Li

In this paper, the influence of the heaving motion on the nonlinear dynamic behavior of the rotor-bearing system is considered. First, a mathematic model of the marine rotor-bearing system is developed on the short bearing theory in the noninertial reference system, in which the heaving motion is taken into account. Then its dynamic characteristics are analyzed based on the numerical integration method, such as the bifurcation diagram, the largest Lyapunov exponents (LLE), the steady-state response, and the rotor orbit and its Poincaré map. The results indicate that heaving motion has a great effect on the dynamics of the rotor system, which exhibits a period 1 motion at low rotating speed, with the increase of the rotating speed, the phenomena of the quasiperiodic, period 2, and double Hopf bifurcations appear. Its dynamic performance presents a period 1 motion, period 2, quasiperiodic, and chaotic oscillation.

2010 ◽  
Vol 34-35 ◽  
pp. 467-471
Author(s):  
Li Cui ◽  
Jian Rong Zheng

Rigid rotor roller bearing system displays complicated nonlinear dynamic behavior due to nonlinear Hertzian force of bearing. Nonlinear bearing forces of roller bearing and dynamic equations of rotor bearing system are established. The bifurcation and stability of the periodic motion of the system in radial clearance-rotating speed and ellipticity-rotating speed parametric domains are studied by use of continuation-shooting algorithm for periodic solutions of nonlinear non-autonomous dynamics system. Results show that the parameters of rotor bearing system should be designed carefully in order to obtain period-1 motion.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Chundong Xu ◽  
Shuyun Jiang

The purpose of this paper is to investigate the dynamic characteristics of a motorized spindle with externally pressurized air bearings. The externally pressurized air bearings consist of a journal bearing and a double pad thrust bearing with orifice restrictors. The equations of motion for the rotor-bearing system are established considering five degrees-of-freedom (DOF). The perturbation method and the finite difference method are introduced to calculate the static and dynamic characteristics of the air bearings; and the effects of the rotating speed and tilt angle of the rotor on the dynamic characteristics of the air bearings are analyzed. With the dynamic coefficients of the air bearings and the 5DOF rotor-dynamic model obtained, the stability, the unbalance response, and the forced response of the rotor-bearing system are investigated. Finally, the static and dynamic characteristics of the spindle are verified by an experimental study.


2014 ◽  
Vol 598 ◽  
pp. 202-205 ◽  
Author(s):  
Wen Zhao ◽  
Ming Li

The mathematic model of rotor-bearing system coupled with floating raft isolation device is developed and its nonlinear dynamic characteristics are mainly discussed in this paper. First, on the basic assumption theory of short bearing, the nonlinear dynamic motions of the system with 4 DOF is deduced after considering the vertical and horizontal deformation and the nonlinear vibrating behaviors are analyzed such as the steady state response and its spectrum, orbit and its Poincaré map. The results show that the responses at a low speed appear single periodic motion, with increasing the speed it indicates the doubling and quasi periodic motion, etc.


Author(s):  
Yi Liu ◽  
Heng Liu ◽  
Xin Wang ◽  
Minqing Jing

The nonlinear dynamic characteristics of three-dimensional rod-fastening rotor bearing system are investigated in this paper. The rod-fastening rotor includes discontinuous shaft, rotating disks, circumferentially distributed rods, and macrointerfaces between disks. The first three parts are discretized by three dimensional elements, and the macrointerfaces are connected by some springs whose stiffness is determined by a proposed linear partition method. For comparison, the three-dimensional dynamic model of a corresponding complete rotor bearing system is also built. After the rod-fastening and complete rotor bearing system are reduced by a component mode synthesis, periodic motions and stability margins are calculated by using the shooting method and path-following technique, and the local stability of system is obtained by using the Floquet theory. Comparative results show the both systems have a resemblance in the bifurcation features when mass eccentricity and rotating speed are changed. The vibration response has the identical frequency components when typical bifurcations occur. The dynamic stress is obtained by regarding the displacements of all nodes as load. Moreover, the unbalanced and insufficient of the pre-tightening forces lead to obvious disadvantageous influence on the stability and vibration of the both systems. Generally, this paper considers the interfacial effect of the rod-fastening rotor bearing system and the relative nonlinear dynamic features are obtained.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Fangxu Sun ◽  
Xianbiao Zhang ◽  
Xing Wang ◽  
Zhenzhong Su ◽  
Dong Wang

Effects of shaft shape errors are studied on dynamic characteristics of a rotor-bearing system. Stability characteristics of the cylindrical journal bearing are studied. It is shown that the rotating speed at which the oil whip occurs increases when the shape errors exit. And, there is a threshold speed of the bearing with shaft shape errors; before the speed is increased to the threshold, orbits of the center of the journal decrease, and when the speed exceeds the threshold, the orbits increase dramatically and oil whip appears. Furthermore, the quantitative relationship between shaft shape errors and bearing reaction forces of the rotor-bearing system is obtained, which is verified by experiments using rotors with different machining precisions. In order to reduce computing time, variational principle is applied when solving Reynolds’ equation.


Author(s):  
Wenzhuo Zhang ◽  
Ming Li

The coupled heave and pitch motions of a ship sailing in head waves affect the stability of the marine rotor-bearing system. Based on the theory of analytical mechanics, this study establishes a dynamic model of the rotor-bearing system subjected to the coupled motions of heave and pitch, considering nonlinear oil film moments produced by the tilting of the rotor in the bearings. The nonlinear dynamic behaviours of the system are analysed using numerical methods to obtain Poincaré sections, bifurcation diagrams, and the largest Lyapunov exponents. The results show that dynamic bifurcation characteristics reveal complex quasi-periodic motion of upper and lower branches after the initial instability of the system, and the speed of second instability increase markedly. At high speeds, the amplitude of the rotor system increases sharply, which can cause the rotor to touch the inner wall of the bearings in the quasi-periodic state and a failure to transition to the chaotic state. Additionally, the effects of heave and pitch amplitude variations on the dynamic characteristics of the system are also discussed.


2011 ◽  
Vol 52-54 ◽  
pp. 303-307
Author(s):  
Yue Gang Luo ◽  
Song He Zhang ◽  
Zhao Hui Ren ◽  
Bang Chun Wen

The dynamic model of two-span rotor-bearing system with three-coupling faults of rub-impact, crack and pedestal looseness faults was set up, and the influences of faults to nonlinear dynamic characteristics of the system were studied by mapping and continuation comprehensive method. There are many harmonic elements of 1/3, 1/2, 2/3, 1, 3/2 and 2 et al within the sub-critical rotate speed range. But the 3/2 and 2-harmonic elements decrease within the super-critical rotate speed range. It may the main characteristics of the system with three-coupling faults of rub-impact, crack and pedestal looseness. It should notice to diagnosis the three-coupling faults of the system when running within the super-critical rotate speed range.


Sign in / Sign up

Export Citation Format

Share Document